IDEAS home Printed from https://ideas.repec.org/p/zbw/rwirep/660.html
   My bibliography  Save this paper

Fast, approximate MCMC for Bayesian analysis of large data sets: A design based approach

Author

Listed:
  • Kaeding, Matthias

Abstract

We propose a fast approximate Metropolis-Hastings algorithm for large data sets embedded in a design based approach. Here, the loglikelihood ratios involved in the Metropolis-Hastings acceptance step are considered as data. The building block is one single subsample from the complete data set, so that the necessity to store the complete data set is bypassed. The subsample is taken via the cube method, a balanced sampling design, which is defined by the property that the sample mean of some auxiliary variables is close to the sample mean of the complete data set. We develop several computationally and statistically efficient estimators for the Metropolis-Hastings acceptance probability. Our simulation studies show that the approach works well and can lead to results which are close to the use of the complete data set, while being much faster. The methods are applied on a large data set consisting of all German diesel prices for the first quarter of 2015.

Suggested Citation

  • Kaeding, Matthias, 2016. "Fast, approximate MCMC for Bayesian analysis of large data sets: A design based approach," Ruhr Economic Papers 660, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  • Handle: RePEc:zbw:rwirep:660
    DOI: 10.4419/86788766
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/148310/1/873685229.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4419/86788766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guillaume Chauvet & Yves Tillé, 2006. "A fast algorithm for balanced sampling," Computational Statistics, Springer, vol. 21(1), pages 53-62, March.
    2. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    2. R. Benedetti & M. S. Andreano & F. Piersimoni, 2019. "Sample selection when a multivariate set of size measures is available," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(1), pages 1-25, March.
    3. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    4. Chauvet, Guillaume & Do Paco, Wilfried, 2018. "Exact balanced random imputation for sample survey data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 1-16.
    5. Roberto Benedetti & Maria Michela Dickson & Giuseppe Espa & Francesco Pantalone & Federica Piersimoni, 2022. "A simulated annealing-based algorithm for selecting balanced samples," Computational Statistics, Springer, vol. 37(1), pages 491-505, March.
    6. Hervé Cardot & Camelia Goga & Pauline Lardin, 2014. "Variance Estimation and Asymptotic Confidence Bands for the Mean Estimator of Sampled Functional Data with High Entropy Unequal Probability Sampling Designs," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 516-534, June.
    7. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    8. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    9. Hasler, Caren & Tillé, Yves, 2014. "Fast balanced sampling for highly stratified population," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 81-94.
    10. Leuenberger, Michael & Eustache, Esther & Jauslin, Raphaël & Tillé, Yves, 2022. "Balancing a sample almost perfectly," Statistics & Probability Letters, Elsevier, vol. 180(C).
    11. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    12. Matei Alina, 2021. "Book Review," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1079-1081, December.
    13. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    14. Louis‐Paul Rivest & Serigne Abib Gaye, 2023. "Using Survey Sampling Algorithms For Exact Inference in Logistic Regression," International Statistical Review, International Statistical Institute, vol. 91(1), pages 18-34, April.
    15. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    16. Lennart Bondesson, 2010. "Conditional and Restricted Pareto Sampling: Two New Methods for Unequal Probability Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 514-530, September.
    17. Tillé, Yves & Favre, Anne-Catherine, 2005. "Optimal allocation in balanced sampling," Statistics & Probability Letters, Elsevier, vol. 74(1), pages 31-37, August.
    18. Yves Tillé, 2016. "The legacy of Corrado Gini in survey sampling and inequality theory," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 167-176, August.
    19. G. Alleva & G. Arbia & P. D. Falorsi & V. Nardelli & A. Zuliani, 2023. "Optimal two-stage spatial sampling design for estimating critical parameters of SARS-CoV-2 epidemic: Efficiency versus feasibility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 983-999, September.
    20. Stefan Zins & Jan Pablo Burgard, 2020. "Planning Domain Sizes in Cluster Sampling," Research Papers in Economics 2020-06, University of Trier, Department of Economics.

    More about this item

    Keywords

    Bayesian inference; big data; approximate MCMC; survey sampling;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:rwirep:660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwiesde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.