IDEAS home Printed from https://ideas.repec.org/p/zbw/cauman/591.html
   My bibliography  Save this paper

Simulated annealing algorithm for the robust spanning tree problem

Author

Listed:
  • Nikulin, Yury

Abstract

This paper addresses the robust spanning tree problem with interval data, i.e. the case of classical minimum spanning tree problem when edge weights are not fixed but take their values from some intervals associated with edges. The problem consists in finding a spanning tree that minimizes so-called robust deviation, i.e. deviation from an optimal solution under the worst case realization of interval weights. As it was proven in [8], the problem is NP-hard, therefore it is of great interest to tackle it with some metaheuristic approach, namely simulated annealing, in order to calculate an approximate solution for large scale instances efficiently. We describe theoretical aspects and present the results of computational experiments. To the best of our knowledge, this is the first attempt to develop a metaheuristic approach for solving the robust spanning tree problem.

Suggested Citation

  • Nikulin, Yury, 2005. "Simulated annealing algorithm for the robust spanning tree problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 591, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  • Handle: RePEc:zbw:cauman:591
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/147649/1/manuskript_591.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montemanni, R. & Gambardella, L. M., 2005. "A branch and bound algorithm for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 161(3), pages 771-779, March.
    2. Nikulin, Yury V., 2004. "Robustness in combinatorial optimization and scheduling theory: An annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 583, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikulin, Yury, 2005. "Solving the robust shortest path problem with interval data using a probabilistic metaheuristic approach," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 597, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    2. Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre (Ed.), 2006. "Jahresbericht 2005," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 603, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikulin, Y. & Karelkina, O. & Mäkelä, M.M., 2013. "On accuracy, robustness and tolerances in vector Boolean optimization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 449-457.
    2. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    4. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    5. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    6. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    7. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    8. Dorndorf, Ulrich & Drexl, Andreas & Nikulin, Yury & Pesch, Erwin, 2005. "Flight gate scheduling: State-of-the-art and recent developments," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 584, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    10. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    11. Ulrich Dorndorf & Florian Jaehn & Erwin Pesch, 2017. "Flight gate assignment and recovery strategies with stochastic arrival and departure times," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 65-93, January.
    12. Tsao, Yu-Chung & Thanh, Vo-Van & Lu, Jye-Chyi, 2019. "Multiobjective robust fuzzy stochastic approach for sustainable smart grid design," Energy, Elsevier, vol. 176(C), pages 929-939.
    13. Chen, Andrew N.K. & Goes, Paulo B. & Gupta, Alok & Marsden, James R., 2006. "Heuristics for selecting robust database structures with dynamic query patterns," European Journal of Operational Research, Elsevier, vol. 168(1), pages 200-220, January.
    14. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    15. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    16. Erfan Hassannayebi & Seyed Hessameddin Zegordi & Mohammad Reza Amin-Naseri & Masoud Yaghini, 2017. "Train timetabling at rapid rail transit lines: a robust multi-objective stochastic programming approach," Operational Research, Springer, vol. 17(2), pages 435-477, July.
    17. Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.
    18. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    19. Bastian, Nathaniel D. & Lunday, Brian J. & Fisher, Christopher B. & Hall, Andrew O., 2020. "Models and methods for workforce planning under uncertainty: Optimizing U.S. Army cyber branch readiness and manning," Omega, Elsevier, vol. 92(C).
    20. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauman:591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ibkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.