IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc0404.html
   My bibliography  Save this paper

Periodic correlation vs. integration and cointegration (Okresowa korelacja a integracja i kointegracja)

Author

Listed:
  • Ewa Broszkiewicz-Suwaj
  • Agnieszka Wylomanska

Abstract

In this paper we present a new approach to integration and cointegration. We show that a periodically correlated time series can be divided in a natural way into subseries that are integrated. Moreover, with high probability they are cointegrated. Therefore it is enough to show periodic correlation of the original series to conclude that the subseries are integrated. In the first part of the paper we present the main features of periodically correlated processes and a method of detecting periodic correlation. We illustrate it using a data set of spot electricity prices from the Nord Pool Power Exchange. In the next section we show that the subseries (one for each day of the week) exhibit integration as well as cointegration.

Suggested Citation

  • Ewa Broszkiewicz-Suwaj & Agnieszka Wylomanska, 2004. "Periodic correlation vs. integration and cointegration (Okresowa korelacja a integracja i kointegracja)," HSC Research Reports HSC/04/04, Hugo Steinhaus Center, Wroclaw University of Technology.
  • Handle: RePEc:wuu:wpaper:hsc0404
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_04_04.pdf
    File Function: Draft, 2004 (in Polish)
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Broszkiewicz-Suwaj, E & Makagon, A & Weron, R & Wyłomańska, A, 2004. "On detecting and modeling periodic correlation in financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 196-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    2. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    3. Mahmoudi, Mohammad Reza & Heydari, Mohammad Hossein & Roohi, Reza, 2019. "A new method to compare the spectral densities of two independent periodically correlated time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 103-110.
    4. Lozinskaia, Agata & Redkina, Anastasiia & Shenkman, Evgeniia, 2020. "Electricity consumption forecasting for integrated power system with seasonal patterns," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 5-25.
    5. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    6. ŁUkasz Lenart & Jacek Leśkow & Rafał Synowiecki, 2008. "Subsampling in testing autocovariance for periodically correlated time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 995-1018, November.
    7. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    8. Aleksandra Grzesiek & Prashant Giri & S. Sundar & Agnieszka WyŁomańska, 2020. "Measures of Cross‐Dependence for Bidimensional Periodic AR(1) Model with α‐Stable Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 785-807, November.
    9. Bartosz Uniejewski & Jakub Nowotarski & Rafał Weron, 2016. "Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 9(8), pages 1-22, August.
    10. A. R. Nematollahi & A. R. Soltani & M. R. Mahmoudi, 2017. "Periodically correlated modeling by means of the periodograms asymptotic distributions," Statistical Papers, Springer, vol. 58(4), pages 1267-1278, December.
    11. Soumya Das & Marc G. Genton & Yasser M. Alshehri & Georgiy L. Stenchikov, 2021. "A cyclostationary model for temporal forecasting and simulation of solar global horizontal irradiance," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    12. Anna E. Dudek, 2018. "Block bootstrap for periodic characteristics of periodically correlated time series," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 87-124, January.
    13. Mohammad Reza Mahmoudi & Mohsen Maleki, 2017. "A new method to detect periodically correlated structure," Computational Statistics, Springer, vol. 32(4), pages 1569-1581, December.
    14. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.

    More about this item

    Keywords

    Cointegration; Integration; PARMA model; Periodic correlation;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc0404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.