IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Projecting the Forward Rate Flow on a Finite Dimensional Manifold

Listed author(s):
  • Erhan Bayraktar

    (Princeton University)

  • Li Chen

    (Princeton University)

  • H. Vincent Poor

    (Princeton University)

Given an Heath-Jarrow-Morton (HJM) interest rate model and a parametrized family of finite dimensional forward rate curves, this paper provides us a way to project this infinite dimensional HJM forward rate curve to the finite dimensional manifold. This projection characterizes banks' behavior of calibrating forward curves by applying a certain family of curves (e.g., Nelson-Seigel family). Moreover, we derive the Stratonovich dynamics of the projected finite dimensional forward curve. This leads an implicit algorithm for parametric estimation of the original HJM model. We have demonstrated the feasibility of this method by applying generalized method of moments and methods of simulated moments.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Finance with number 0303007.

in new window

Length: 8 pages
Date of creation: 29 Mar 2003
Handle: RePEc:wpa:wuwpfi:0303007
Note: Type of Document - Tex; prepared on IBM PC - PC-TEX/UNIX Sparc TeX; to print on HP/PostScript/Franciscan monk; pages: 8 ; figures: none. We never published this piece and now we would like to reduce our mailing and xerox cost by posting it.
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0303007. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.