IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/01-05-029.html
   My bibliography  Save this paper

The Topology of Technology Graphs: Small World Patterns in Electronic Circuits

Author

Listed:
  • Ramon Ferrer i Cancho
  • Christiaan Janssen
  • Ricard V. Solé

Abstract

Recent theoretical studies and extensive data analyses have revealed a common feature displayed by biological, social and technological networks: the presence of small world patterns. Here we analyse this problem by using several graphs obtained from one of the most common technological systems: electronic circuits. It is shown that both analogic and digital circuits exhibit SW behavior. We conjecture that the SW pattern arises from the compact design in which many elements share a small, close physical neighborhood plus the fact that the system must define a single connected component (which requires shortcuts connecting different integrated clusters). The degree distributions displayed are consistent with a conjecture concerning the sharp cutoffs associated to the presence of costly connections [Amaral et al., Proc. Natl. Acad. Sci. USA 97 , 11149 (2000)] thus providing a limit case for the classes of universality of small world patterns from real, artificial networks. The consequences for circuit design are outlined.

Suggested Citation

  • Ramon Ferrer i Cancho & Christiaan Janssen & Ricard V. Solé, 2001. "The Topology of Technology Graphs: Small World Patterns in Electronic Circuits," Working Papers 01-05-029, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:01-05-029
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cárdenas, J.P. & Mouronte, M.L. & Moyano, L.G. & Vargas, M.L. & Benito, R.M., 2010. "On the robustness of Spanish telecommunication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4209-4216.
    2. Comellas, Francesc & Miralles, Alícia & Liu, Hongxiao & Zhang, Zhongzhi, 2013. "The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2803-2806.
    3. Cárdenas, J.P. & Mouronte, M.L. & Benito, R.M. & Losada, J.C., 2010. "Compatibility as underlying mechanism behind the evolution of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1789-1798.
    4. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    5. Comellas, Francesc & Miralles, Alicia, 2009. "Modeling complex networks with self-similar outerplanar unclustered graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2227-2233.
    6. repec:spr:scient:v:89:y:2011:i:1:d:10.1007_s11192-011-0434-6 is not listed on IDEAS
    7. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    8. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, Open Access Journal, vol. 8(9), pages 1-55, August.
    9. Miralles, Alicia & Comellas, Francesc & Chen, Lichao & Zhang, Zhongzhi, 2010. "Planar unclustered scale-free graphs as models for technological and biological networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1955-1964.

    More about this item

    Keywords

    Small world; electronic devices; networks; graph theory; evolvable hardware; statistical physics;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-05-029. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: http://edirc.repec.org/data/epstfus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.