IDEAS home Printed from https://ideas.repec.org/p/wlu/wpaper/97-1.html
   My bibliography  Save this paper

The Role of Seasonality in Economic Time Series: Reinterpretating Money-Output Causality in U.S. Data

Author

Listed:
  • Lee, H.S.
  • Siklos, P.L.

Abstract

While empirical evidence on the relationship between money and income has mainly been presented using seasonally adjusted data, seasonally unadjusted data are used in this paper to examine the time series behaviour of money, real GNP, and industrial production, at both the seasonal and zero frequencies based on tests of cointegration and seasonal cointegration. Two important conclusions are reached in the paper. First, although the univariate time series properties of M1 and real GNP appear to be very similar at both the seasonal and zero frequencies, seasonal comovements of M1 and real GNP turn out to be different from long- run comovements. Second, when seasonally unadjusted data are used, there appears to be no long-run relationship between money (M1 or M2) and output in the sense that the null of no cointegration cannot be rejected.

Suggested Citation

  • Lee, H.S. & Siklos, P.L., 1997. "The Role of Seasonality in Economic Time Series: Reinterpretating Money-Output Causality in U.S. Data," Working Papers 97-1, Wilfrid Laurier University, Department of Economics.
  • Handle: RePEc:wlu:wpaper:97-1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Friedman, Benjamin M. & Kuttner, Kenneth N., 1993. "Another look at the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 189-203.
    2. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    3. Lee, Hahn S. & Siklos, Pierre L., 1995. "A note on the critical values for the maximum likelihood (seasonal) cointegration tests," Economics Letters, Elsevier, vol. 49(2), pages 137-145, August.
    4. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    5. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    6. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    7. Granger, C. W. J. & Siklos, Pierre L., 1995. "Systematic sampling, temporal aggregation, seasonal adjustment, and cointegration theory and evidence," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 357-369.
    8. Barsky, Robert B & Miron, Jeffrey A, 1989. "The Seasonal Cycle and the Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 503-534, June.
    9. Franses, Philip Hans & Hylleberg, Svend & Lee, Hahn S., 1995. "Spurious deterministic seasonality," Economics Letters, Elsevier, vol. 48(3-4), pages 249-256, June.
    10. Ghysels, Eric & Perron, Pierre, 1993. "The effect of seasonal adjustment filters on tests for a unit root," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 57-98.
    11. Engle, R. F. & Granger, C. W. J. & Hallman, J. J., 1989. "Merging short-and long-run forecasts : An application of seasonal cointegration to monthly electricity sales forecasting," Journal of Econometrics, Elsevier, vol. 40(1), pages 45-62, January.
    12. Engle, R. F. & Granger, C. W. J. & Hylleberg, S. & Lee, H. S., 1993. "The Japanese consumption function," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 275-298.
    13. Stock, James H. & Watson, Mark W., 1989. "Interpreting the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 40(1), pages 161-181, January.
    14. Finn E. Kydland & Edward C. Prescott, 1990. "Business cycles: real facts and a monetary myth," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Spr, pages 3-18.
    15. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    16. Engle, Robert F. & Yoo, Byung Sam, 1987. "Forecasting and testing in co-integrated systems," Journal of Econometrics, Elsevier, vol. 35(1), pages 143-159, May.
    17. Franses, Philip Hans & Kunst, Robert M, 1999. " On the Role of Seasonal Intercepts in Seasonal Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(3), pages 409-433, August.
    18. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    19. Lee, Hahn Shik, 1992. "Maximum likelihood inference on cointegration and seasonal cointegration," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 1-47.
    20. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    21. Friedman, Benjamin M & Kuttner, Kenneth N, 1992. "Money, Income, Prices, and Interest Rates," American Economic Review, American Economic Association, vol. 82(3), pages 472-492, June.
    22. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar A Mendoza Lugo, 2008. "The differential impact of real interest rates and credit availability on private investment: evidence from Venezuela," BIS Papers chapters,in: Bank for International Settlements (ed.), Transmission mechanisms for monetary policy in emerging market economies, volume 35, pages 501-537 Bank for International Settlements.
    2. Lof, Marten & Hans Franses, Philip, 2001. "On forecasting cointegrated seasonal time series," International Journal of Forecasting, Elsevier, vol. 17(4), pages 607-621.
    3. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    4. Philip Rothman & Dick van Dijk & Philip Hans Franses, 1999. "A Multivariate STAR Analysis of the Relationship Between Money and Output," Working Papers 9913, East Carolina University, Department of Economics.
    5. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    6. Darne, Olivier, 2004. "Seasonal cointegration for monthly data," Economics Letters, Elsevier, vol. 82(3), pages 349-356, March.
    7. Geoffrey R. Dunbar, 2014. "Demographics and the Demand for Currency," Staff Working Papers 14-59, Bank of Canada.
    8. Nikolaos Giannellis & Minoas Koukouritakis, 2011. "Behavioural equilibrium exchange rate and total misalignment: evidence from the euro exchange rate," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 38(4), pages 555-578, November.
    9. Lee TongHung & Hwang Hoyoung, 2001. "Money, Interest Rate and Foreign Exchange Rate As Indicator Variables Of Monetary Policy," International Economic Journal, Taylor & Francis Journals, vol. 15(2), pages 77-98, June.
    10. Albertson, Kevin & Aylen, Jonathan, 2003. "Forecasting the behaviour of manufacturing inventory," International Journal of Forecasting, Elsevier, vol. 19(2), pages 299-311.

    More about this item

    Keywords

    COINTEGRATION ; CORRELATION ; STATISTICS;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wlu:wpaper:97-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Andrei Kovacsik). General contact details of provider: http://edirc.repec.org/data/sbwluca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.