IDEAS home Printed from
   My bibliography  Save this paper

Nonstandard Estimation of Inverse Conditional Density-Weighted Expectations


  • Chuan Goh


This paper is concerned with the semiparametric estimation of function means that are scaled by an unknown conditional density function. Parameters of this form arise naturally in the consideration of models where interest is focused on the expected value of an integral of a conditional expectation with respect to a continuously distributed “special regressor”' with unbounded support. In particular, a consistent and asymptotically normal estimator of an inverse conditional density-weighted average is proposed whose validity does not require data-dependent trimming or the subjective choice of smoothing parameters. The asymptotic normality result is also rate adaptive in the sense that it allows for the formulation of the usual Wald-type inference procedures without knowledge of the estimator's actual rate of convergence, which depends in general on the tail behaviour of the conditional density weight. The theory developed in this paper exploits recent results of Goh & Knight (2009) concerning the behaviour of estimated regression-quantile residuals. Simulation experiments illustrating the applicability of the procedure proposed here to a semiparametric binary-choice model are suggestive of good small-sample performance.

Suggested Citation

  • Chuan Goh, 2009. "Nonstandard Estimation of Inverse Conditional Density-Weighted Expectations," Working Papers tecipa-374, University of Toronto, Department of Economics.
  • Handle: RePEc:tor:tecipa:tecipa-374

    Download full text from publisher

    File URL:
    File Function: Main Text
    Download Restriction: no

    References listed on IDEAS

    1. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 497-517.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    3. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Semiparametric; identification at infinity; special regressor; rate-adaptive; regression quantile;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-374. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.