IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2006cf459.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Simultaneous estimation of normal precision matrices

Author

Listed:
  • Hisayuki Tsukuma

    (Department of Medical Informatics, Toho University)

  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

Abstract

This paper treats the problem of simultaneously estimating the precision matrices in multivariate normal distributions. A condition for improvement on the unbiased estimators of the precision matrices is derived under a quadratic loss function. The improvement condition is similar to the superharmonic condition established by Stein (1981). The condition allows us not only to provide various alternative estimators such as shrinkage type and enlargement type estimators for the unbiased estimators, but also to present a condition on a prior density under which the resulting generalized Bayes estimators dominate the unbiased estimators. Also, a unified method improving upon both the shrinkage and the enlargement type estimators is discussed.

Suggested Citation

  • Hisayuki Tsukuma & Tatsuya Kubokawa, 2006. "Simultaneous estimation of normal precision matrices," CIRJE F-Series CIRJE-F-459, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2006cf459
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2006/2006cf459.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dey, Dipak K., 1987. "Improved estimation of a multinormal precision matrix," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 125-128, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    2. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2007. "Methods for improvement in estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1592-1610, September.
    3. Hisayuki Tsukuma & Tatsuya Kubokawa, 2005. "Methods for Improvement in Estimation of a Normal Mean Matrix," CIRJE F-Series CIRJE-F-378, CIRJE, Faculty of Economics, University of Tokyo.
    4. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    5. Tsukuma, Hisayuki & Konno, Yoshihiko, 2006. "On improved estimation of normal precision matrix and discriminant coefficients," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1477-1500, August.
    6. Chételat, Didier & Wells, Martin T., 2016. "Improved second order estimation in the singular multivariate normal model," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 1-19.
    7. Fourdrinier, Dominique & Mezoued, Fatiha & Wells, Martin T., 2016. "Estimation of the inverse scatter matrix of an elliptically symmetric distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 32-55.
    8. Tsukuma, Hisayuki, 2014. "Bayesian estimation of a bounded precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 160-172.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2006cf459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.