IDEAS home Printed from
   My bibliography  Save this paper

A Revisit to Estimation of the Precision Matrix of the Wishart Distribution


  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)


The estimation of the precision matrix of the Wishart distribution is one of classical problems studied in a decision-theoretic framework and is related to estimation of mean and covariance matrices of a multivariate normal distribution. This paper revisits the estimation problem of the precision matrix and investigates how it connects with the theory of the covariance estimation from a decision-theoretic aspect. To evaluate estimators in terms of risk functions, we employ two kinds of loss functions: the non-scale-invariant loss and the scale-invariant loss functions which are induced from estimation of means. Using the same methods as in the estimation of the covariance matrix, we derive not only the James-Stein type of estimators improving on the Stein type one under the non-scale-invariant loss. It is observed that dominance properties given in the estimation of the covariance matrix do not necessarily hold in our setup under the non-scale-invariant loss, but still hold relative to the scale-invariant loss. The simulation studies are given, and estimators having superior risk performances are proposed.

Suggested Citation

  • Tatsuya Kubokawa, 2004. "A Revisit to Estimation of the Precision Matrix of the Wishart Distribution," CIRJE F-Series CIRJE-F-264, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2004cf264

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Sheena, Yo & Takemura, Akimichi, 1992. "Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 117-131, April.
    2. Zheng, Z., 1986. "On estimation of matrix of normal mean," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 70-82, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2004cf264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.