IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20060049.html
   My bibliography  Save this paper

The Use of Spatial Filtering Techniques: The Spatial and Space-time Structure of German Unemployment Data

Author

Listed:
  • Roberto Patuelli

    (Vrije Universiteit Amsterdam)

  • Daniel A. Griffith

    (University of Texas at Dallas)

  • Michael Tiefelsdorf

    (University of Texas at Dallas)

  • Peter Nijkamp

    (Vrije Universiteit Amsterdam)

Abstract

Socio-economic interrelationships among regions can be measured in terms of economic flows, migration, or physical geographically-based measures, such as distance or length of shared areal unit boundaries. In general, proximity and openness tend to favour a similar economic performance among adjacent regions. Therefore, proper forecasting of socio-economic variables, such as employment, requires an understanding of spatial (or spatio-temporal) autocorrelation effects associated with a particular geographic configuration of a system of regions. Several spatial econometric techniques have been developed in recent years to identify spatial interaction effects within a parametric framework. Alternatively, newly devised spatial filtering techniques aim to achieve this end as well through the use of a semi-parametric approach. Experiments presented in this paper deal with the analysis of and accounting for spatial autocorrelation by means of spatial filtering t! echniques for data pertaining to regional unemployment in Germany. The available data set comprises information about the share of unemployed workers in 439 German districts (the NUTS-III regional aggregation level). Results based upon an eigenvector spatial filter model formulation (that is, the use of orthogonal map pattern components), constructed for the 439 German districts, are presented, with an emphasis on their consistency over several years. Insights obtained by applying spatial filtering to the database are also discussed.

Suggested Citation

  • Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2006. "The Use of Spatial Filtering Techniques: The Spatial and Space-time Structure of German Unemployment Data," Tinbergen Institute Discussion Papers 06-049/3, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20060049
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/06049.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daniel A Griffith, 2004. "A Spatial Filtering Specification for the Autologistic Model," Environment and Planning A, , vol. 36(10), pages 1791-1811, October.
    2. repec:bla:rdevec:v:6:y:2002:i:3:p:369-82 is not listed on IDEAS
    3. Reinhold Kosfeld & Christian Dreger, 2006. "Thresholds for employment and unemployment: A spatial analysis of German regional labour markets, 1992–2000," Papers in Regional Science, Wiley Blackwell, vol. 85(4), pages 523-542, November.
    4. Lambert, Dayton M. & Brown, Jason P. & Florax, Raymond J.G.M., 2010. "A two-step estimator for a spatial lag model of counts: Theory, small sample performance and an application," Regional Science and Urban Economics, Elsevier, vol. 40(4), pages 241-252, July.
    5. Enrique López-Bazo & Tomás del Barrio & Manuel Artis, 2002. "The regional distribution of Spanish unemployment: A spatial analysis," Papers in Regional Science, Springer;Regional Science Association International, vol. 81(3), pages 365-389.
    6. Maria Francesca Cracolici & Miranda Cuffaro & Peter Nijkamp, 2007. "Geographical Distribution of Unemployment: An Analysis of Provincial Differences in Italy," Growth and Change, Wiley Blackwell, vol. 38(4), pages 649-670, December.
    7. repec:bla:germec:v:8:y:2007:i::p:510-535 is not listed on IDEAS
    8. Anselin, Luc, 2002. "Under the hood : Issues in the specification and interpretation of spatial regression models," Agricultural Economics, Blackwell, vol. 27(3), pages 247-267, November.
    9. Daniel A. Griffith, 2000. "A linear regression solution to the spatial autocorrelation problem," Journal of Geographical Systems, Springer, vol. 2(2), pages 141-156, July.
    10. Diana Weinhold, 2002. "The Importance of Trade and Geography in the Pattern of Spatial Dependence of Growth Rates," Review of Development Economics, Wiley Blackwell, vol. 6(3), pages 369-382, October.
    11. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    12. Olivier Jean Blanchard & Lawrence F. Katz, 1992. "Regional Evolutions," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(1), pages 1-76.
    13. Daniel A. Griffith, 2008. "A comparison of four model specifications for describing small heterogeneous space‐time datasets: Sugar cane production in Puerto Rico, 1958/59–1973/74," Papers in Regional Science, Wiley Blackwell, vol. 87(3), pages 341-355, August.
    14. M Tiefelsdorf & D A Griffith & B Boots, 1999. "A Variance-Stabilizing Coding Scheme for Spatial Link Matrices," Environment and Planning A, , vol. 31(1), pages 165-180, January.
    15. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: an Analysis of German Labour Markets," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 7-30.
    16. Salima Bouayad-Agha & Lionel Védrine, 2010. "Estimation Strategies for a Spatial Dynamic Panel using GMM. A New Approach to the Convergence Issue of European Regions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(2), pages 205-227.
    17. Daniel Griffith & Jean Paelinck, 2009. "Specifying a joint space- and time-lag using a bivariate Poisson distribution," Journal of Geographical Systems, Springer, vol. 11(1), pages 23-36, March.
    18. Daniel A. Griffith, 2003. "Spatial Autocorrelation and Spatial Filtering," Advances in Spatial Science, Springer, number 978-3-540-24806-4.
    19. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    20. Simonetta Longhi & Peter Nijkamp, 2007. "Forecasting Regional Labor Market Developments under Spatial Autocorrelation," International Regional Science Review, , vol. 30(2), pages 100-119, April.
    21. repec:dgr:uvatin:20060020 is not listed on IDEAS
    22. Arthur Getis, 1990. "Screening For Spatial Dependence In Regression Analysis," Papers in Regional Science, Wiley Blackwell, vol. 69(1), pages 69-81, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012. "Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.
    2. Giuliano Guerra & Roberto Patuelli & Rico Maggi, 2012. "Ethnic concentration, cultural identity and immigrant self-employment in Switzerland," Chapters, in: Peter Nijkamp & Jacques Poot & Mediha Sahin (ed.), Migration Impact Assessment, chapter 4, pages 147-171, Edward Elgar Publishing.
    3. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    4. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011. "Neural networks for regional employment forecasts: are the parameters relevant?," Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
    5. Nicola Pontarollo & Roberto Ricciuti, 2015. "Railways and the Productivity Gap in Italy: Persistence and Divergence after Unification," CESifo Working Paper Series 5438, CESifo.
    6. Clément Gorin, 2016. "Patterns and determinants of inventors' mobility across European urban areas," Working Papers halshs-01313086, HAL.
    7. Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Papers in Regional Science, Wiley Blackwell, vol. 96(2), pages 357-380, June.
    8. Buendía Azorín, José Daniel & Sánchez de la Vega, María del Mar, 2017. "Output growth thresholds for the creation of employment and the reduction of unemployment: A spatial analysis with panel data from the Spanish provinces, 2000–2011," Regional Science and Urban Economics, Elsevier, vol. 67(C), pages 42-49.
    9. Gloria Alarcón-García & José Daniel Buendía Azorín & María del Mar Sánchez de la Vega, 2020. "Shadow economy and national culture: A spatial approach," Hacienda Pública Española / Review of Public Economics, IEF, vol. 232(1), pages 53-74, March.
    10. Buendía Azorín, José Daniel. & Sánchez De La Vega, Mª Del Mar, 2017. "Estimación del valor añadido bruto, dependencia espacial y datos de panel: Evidencia en el caso de los municipios de la Región de Murcia /Estimation of Gross Value Added, Spatial Dependence and Panel ," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 315-340, Mayo.
    11. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    12. Hyoung Jun Kim & Bo Kyeong Lee & So Young Sohn, 2020. "Comparing spatial patterns of sole proprietorship and corporate payday lenders in Seoul, Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 64(1), pages 215-236, February.
    13. Matías Mayor & Ana Jesús López, 2009. "Spatial shift-share analysis versus spatial filtering: an application to Spanish employment data," Studies in Empirical Economics, in: Giuseppe Arbia & Badi H. Baltagi (ed.), Spatial Econometrics, pages 123-142, Springer.
    14. Roberto Patuelli & Andrea Vaona & Christoph Grimpe, 2010. "The German East‐West Divide In Knowledge Production: An Application To Nanomaterial Patenting," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 101(5), pages 568-582, December.
    15. Jesus Serrano-Lomelin & Charlene C. Nielsen & Anne Hicks & Susan Crawford & Jeffrey A. Bakal & Maria B. Ospina, 2020. "Geographic Inequalities of Respiratory Health Services Utilization during Childhood in Edmonton and Calgary, Canada: A Tale of Two Cities," IJERPH, MDPI, vol. 17(23), pages 1-17, December.
    16. Wang, Yiyi & Kockelman, Kara M. & Wang, Xiaokun (Cara), 2013. "Understanding spatial filtering for analysis of land use-transport data," Journal of Transport Geography, Elsevier, vol. 31(C), pages 123-131.
    17. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    18. Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
    19. Prodromídis, Pródromos-Ioánnis K., 2012. "Modeling male and female employment policy in Greece from local data," Economic Modelling, Elsevier, vol. 29(3), pages 823-839.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    2. Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012. "Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.
    3. Roberto Patuelli & Norbert Schanne & Daniel A. Griffith & Peter Nijkamp, 2012. "Persistence Of Regional Unemployment: Application Of A Spatial Filtering Approach To Local Labor Markets In Germany," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 300-323, May.
    4. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    5. Matías Mayor & Roberto Patuelli, 2012. "Short-Run Regional Forecasts: Spatial Models through Varying Cross-Sectional and Temporal Dimensions," Advances in Spatial Science, in: Esteban Fernández Vázquez & Fernando Rubiera Morollón (ed.), Defining the Spatial Scale in Modern Regional Analysis, edition 127, chapter 0, pages 173-192, Springer.
    6. Buendía Azorín, José Daniel & Sánchez de la Vega, María del Mar, 2017. "Output growth thresholds for the creation of employment and the reduction of unemployment: A spatial analysis with panel data from the Spanish provinces, 2000–2011," Regional Science and Urban Economics, Elsevier, vol. 67(C), pages 42-49.
    7. Patricia Suárez & Matías Mayor & Begoña Cueto, 2012. "The accessibility to employment offices in the Spanish labour market," Papers in Regional Science, Wiley Blackwell, vol. 91(4), pages 823-848, November.
    8. Buendía Azorín, José Daniel. & Sánchez De La Vega, Mª Del Mar, 2017. "Estimación del valor añadido bruto, dependencia espacial y datos de panel: Evidencia en el caso de los municipios de la Región de Murcia /Estimation of Gross Value Added, Spatial Dependence and Panel ," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 315-340, Mayo.
    9. Seya, Hajime & Yamagata, Yoshiki & Tsutsumi, Morito, 2013. "Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach," Regional Science and Urban Economics, Elsevier, vol. 43(3), pages 429-444.
    10. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    11. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    12. Vicente Rios Ibañez, 2014. "What drives regional unemployment convergence?," ERSA conference papers ersa14p924, European Regional Science Association.
    13. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    14. Reinhold Kosfeld & Christian Dreger & Hans-Friedrich Eckey, 2008. "On the stability of the German Beveridge curve: a spatial econometric perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(4), pages 967-986, December.
    15. Hans-Friedrich Eckey & Reinhold Kosfeld & Matthias Türck, 2007. "Regionale Entwicklung mit und ohne räumliche Spillover-Effekte," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 27(1), pages 23-42, February.
    16. Kondo, Keisuke, 2015. "Spatial persistence of Japanese unemployment rates," Japan and the World Economy, Elsevier, vol. 36(C), pages 113-122.
    17. Sylvain Barde & Rowan Cherodian & Guy Tchuente, 2024. "Moran's I 2-Stage Lasso: for Models with Spatial Correlation and Endogenous Variables," Papers 2404.02584, arXiv.org.
    18. Christoph Grimpe & Roberto Patuelli, 2011. "Regional knowledge production in nanomaterials: a spatial filtering approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 519-541, June.
    19. Baltagi, Badi H. & Fingleton, Bernard & Pirotte, Alain, 2019. "A time-space dynamic panel data model with spatial moving average errors," Regional Science and Urban Economics, Elsevier, vol. 76(C), pages 13-31.
    20. Maria Francesca Cracolici & Miranda Cuffaro & Peter Nijkamp, 2007. "Geographical Distribution of Unemployment: An Analysis of Provincial Differences in Italy," Growth and Change, Wiley Blackwell, vol. 38(4), pages 649-670, December.

    More about this item

    Keywords

    spatial autocorrelation; spatial filtering; unemployment; Germany;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • R23 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Regional Migration; Regional Labor Markets; Population

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20060049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.