IDEAS home Printed from https://ideas.repec.org/p/swe/wpaper/2007-13.html
   My bibliography  Save this paper

Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models

Author

Listed:
  • Helen Armstrong

    (School of Mathematics, University of New South Wales)

  • Christopher K. Carter

    (School of Economics, University of New South Wales)

  • Kevin K. F. Wong

    (Graduate University for Advanced Studies, Tokyo, Japan)

  • Robert Kohn

    (School of Economics, University of New South Wales)

Abstract

Estimating a covariance matrix efficiently and discovering its structure are important statistical problems with applications in many fields. This article takes a Bayesian approach to estimate the covariance matrix of Gaussian data. We use ideas from Gaussian graphical models and model selection to construct a prior for the covariance matrix that is a mixture over all decomposable graphs, where a graph means the configuration of nonzero offdiagonal elements in the inverse of the covariance matrix. Our prior for the covariance matrix is such that the probability of each graph size is specified by the user and graphs of equal size are assigned equal probability. Most previous approaches assume that all graphs are equally probable. We give empirical results that show the prior that assigns equal probability over graph sizes outperforms the prior that assigns equal probability over all graphs, both in identifying the correct decomposable graph and in more efficiently estimating the covariance matrix. The advantage is greatest when the number of observations is small relative to the dimension of the covariance matrix. The article also shows empirically that there is minimal change in statistical efficiency in using the mixture over decomposable graphs prior for estimating a general covariance compared to the Bayesian estimator by Wong et al. (2003), even when the graph of the covariance matrix is nondecomposable. However, our approach has some important advantages over that of Wong et al. (2003). Our method requires the number of decomposable graphs for each graph size. We show how to estimate these numbers using simulation and that the simulation results agree with analytic results when such results are known. We also show how to estimate the posterior distribution of the covariance matrix using Markov chain Monte Carlo with the elements of the covariance matrix integrated out and give empirical results that show the sampler is computationally efficient and converges rapidly. Finally, we note that both the prior and the simulation method to evaluate the prior apply generally to any decomposable graphical model.

Suggested Citation

  • Helen Armstrong & Christopher K. Carter & Kevin K. F. Wong & Robert Kohn, 2007. "Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models," Discussion Papers 2007-13, School of Economics, The University of New South Wales.
  • Handle: RePEc:swe:wpaper:2007-13
    as

    Download full text from publisher

    File URL: http://wwwdocs.fce.unsw.edu.au/economics/Research/WorkingPapers/2007_13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. P. Brooks & P. Giudici & G. O. Roberts, 2003. "Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 3-39, January.
    2. Eva-Maria Fronk & Paolo Giudici, 2004. "Markov Chain Monte Carlo model selection for DAG models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 13(3), pages 259-273, December.
    3. Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
    4. Frederick Wong, 2003. "Efficient estimation of covariance selection models," Biometrika, Biometrika Trust, vol. 90(4), pages 809-830, December.
    5. Mathias Drton, 2004. "Model selection for Gaussian concentration graphs," Biometrika, Biometrika Trust, vol. 91(3), pages 591-602, September.
    6. John C. Liechty, 2004. "Bayesian correlation estimation," Biometrika, Biometrika Trust, vol. 91(1), pages 1-14, March.
    7. Alberto Roverato, 2002. "Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 391-411, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    2. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    3. Webb, Emily L. & Forster, Jonathan J., 2008. "Bayesian model determination for multivariate ordinal and binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2632-2649, January.
    4. Bo Cai & David B. Dunson, 2006. "Bayesian Covariance Selection in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 62(2), pages 446-457, June.
    5. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    6. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    7. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    8. Paolo Giordani & Xiuyan Mun & Robert Kohn, 2012. "Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage," Journal of Financial Econometrics, Oxford University Press, vol. 11(1), pages 154-192, December.
    9. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    10. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    11. Donatello Telesca & Peter Müller & Steven M. Kornblau & Marc A. Suchard & Yuan Ji, 2012. "Modeling Protein Expression and Protein Signaling Pathways," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1372-1384, December.
    12. Xu, Kai & Hao, Xinxin, 2019. "A nonparametric test for block-diagonal covariance structure in high dimension and small samples," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 551-567.
    13. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    14. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
    15. Yu, Philip L.H. & Li, W.K. & Ng, F.C., 2014. "Formulating hypothetical scenarios in correlation stress testing via a Bayesian framework," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 17-33.
    16. Fitch, A. Marie & Jones, Beatrix, 2012. "The cost of using decomposable Gaussian graphical models for computational convenience," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2430-2441.
    17. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    18. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    19. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    20. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Covariance selection; Graphical models; Reduced conditional sampling; Variable selection;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:swe:wpaper:2007-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hongyi Li (email available below). General contact details of provider: https://edirc.repec.org/data/senswau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.