IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Operational risk management and new computational needs in banks

Listed author(s):
  • Duc PHAM-HI


    (Systemes Informations & Finance Ecole Centrale Electronique)

Registered author(s):

    Basel II banking regulation introduces new needs for computational schemes. They involve both optimal stochastic control, and large scale simulations of decision processes of preventing low-frequency high loss-impact events. This paper will first state the problem and present its parameters. It then spells out the equations that represent a rational risk management behavior and link together the variables: Levy processes are used to model operational risk losses, where calibration by historical loss databases is possible ; where it is not the case, qualitative variables such as quality of business environment and internal controls can provide both costs-side and profits-side impacts. Among other control variables are business growth rate, and efficiency of risk mitigation. The economic value of a policy is maximized by resolving the resulting Hamilton-Jacobi-Bellman type equation. Computational complexity arises from embedded interactions between 3 levels: * Programming global optimal dynamic expenditures budget in Basel II context, * Arbitraging between the cost of risk-reduction policies (as measured by organizational qualitative scorecards and insurance buying) and the impact of incurred losses themselves. This implies modeling the efficiency of the process through which forward-looking measures of threats minimization, can actually reduce stochastic losses, * And optimal allocation according to profitability across subsidiaries and business lines. The paper next reviews the different types of approaches that can be envisaged in deriving a sound budgetary policy solution for operational risk management, based on this HJB equation. It is argued that while this complex, high dimensional problem can be resolved by taking some usual simplifications (Galerkin approach, imposing Merton form solutions, viscosity approach, ad hoc utility functions that provide closed form solutions, etc.) , the main interest of this model lies in exploring the scenarios in an adaptive learning framework ( MDP, partially observed MDP, Q-learning, neuro-dynamic programming, greedy algorithm, etc.). This makes more sense from a management point of view, and solutions are more easily communicated to, and accepted by, the operational level staff in banks through the explicit scenarios that can be derived. This kind of approach combines different computational techniques such as POMDP, stochastic control theory and learning algorithms under uncertainty and incomplete information. The paper concludes by presenting the benefits of such a consistent computational approach to managing budgets, as opposed to a policy of operational risk management made up from disconnected expenditures. Such consistency satisfies the qualifying criteria for banks to apply for the AMA (Advanced Measurement Approach) that will allow large economies of regulatory capital charge under Basel II Accord.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2005 with number 355.

    in new window

    Date of creation: 11 Nov 2005
    Handle: RePEc:sce:scecf5:355
    Contact details of provider: Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:355. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.