IDEAS home Printed from https://ideas.repec.org/p/rpp/wpaper/1104.html
   My bibliography  Save this paper

A Monte Carlo Analysis of the VAR-Based Indirect Inference Estimation of DSGE Models

Author

Listed:
  • David Dubois

Abstract

In this paper we study estimation of DSGE models. More specifically, in the indirect inference framework, we analyze how critical is the choice of the reduced form model for estimation purposes. As it turns out, simple VAR parameters performs better than commonly used impulse response functions. This can be attributed to the fact that IRF worsen identification issues for models that are already plagued by that phenomenon.

Suggested Citation

  • David Dubois, 2011. "A Monte Carlo Analysis of the VAR-Based Indirect Inference Estimation of DSGE Models," CREPP Working Papers 1104, Centre de Recherche en Economie Publique et de la Population (CREPP) (Research Center on Public and Population Economics) HEC-Management School, University of Liège.
  • Handle: RePEc:rpp:wpaper:1104
    as

    Download full text from publisher

    File URL: http://www2.ulg.ac.be/crepp/papers/crepp-wp201104.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruge-Murcia, Francisco J., 2007. "Methods to estimate dynamic stochastic general equilibrium models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2599-2636, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    2. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    3. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    4. Kim, Jinill & Ruge-Murcia, Francisco J., 2009. "How much inflation is necessary to grease the wheels?," Journal of Monetary Economics, Elsevier, vol. 56(3), pages 365-377, April.
    5. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    6. RUGE-MURCIA, Francisco J., 2010. "Estimating Nonlinear DSGE Models by the Simulated Method of Moments," Cahiers de recherche 2010-10, Universite de Montreal, Departement de sciences economiques.
    7. Yvan Lengwiler & Jean-Marc Natal, 2010. "Discussion: Measuring the Natural Output Level by DSGE Models: An Empirical Investigation for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 146(I), pages 301-311, March.
    8. Nida Cakir Melek & Michael Plante & Mine Yucel, 2021. "Resource Booms and the Macroeconomy: The Case of U.S. Shale Oil," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 42, pages 307-332, October.
    9. Giovanni Angelini & Luca Fanelli, 2016. "Misspecification and Expectations Correction in New Keynesian DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 623-649, October.
    10. Drissi, Ramzi & Ghassan, Hassan B., 2018. "Sticky Price versus Sticky Information Price: Empirical Evidence in the New Keynesian Setting," MPRA Paper 93075, University Library of Munich, Germany, revised Apr 2019.
    11. Malley, Jim & Woitek, Ulrich, 2010. "Technology shocks and aggregate fluctuations in an estimated hybrid RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1214-1232, July.
    12. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    13. Tommaso Trani, 2011. "Trade in secured debt, adjustment in haircuts and international portfolios," IHEID Working Papers 13-2011, Economics Section, The Graduate Institute of International Studies.
    14. Caglayan, Mustafa & Jehan, Zainab & Mouratidis, Kostas, 2012. "Asymmetric monetary policy rules for open economies: Evidence from four countries," MPRA Paper 37401, University Library of Munich, Germany.
    15. Giesen, Sebastian & Scheufele, Rolf, 2016. "Effects of incorrect specification on the finite sample properties of full and limited information estimators in DSGE models," Journal of Macroeconomics, Elsevier, vol. 48(C), pages 1-18.
    16. Hamed Ghiaie, 2018. "Macroeconomic Consequences of Bank’s Assets Reallocation After Mortgage Defaults," THEMA Working Papers 2018-12, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Komunjer, Ivana & Zhu, Yinchu, 2020. "Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 218(2), pages 561-586.
    18. Elliott, Robert J. & Chen, Zhiping & Duan, Qihong, 2009. "Insurance claims modulated by a hidden Brownian marked point process," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 163-172, October.
    19. Andrianady, Josué R. & Rajaonarison, Njakanasandratra R., 2023. "Introduction à la modélisation de type Modèle d'Equilibre Général Dynamique Stochastique avec friction (MEGDS) [Introduction to Dynamic Stochastic General Equilibrium Modeling with friction (DSGE)]," MPRA Paper 116642, University Library of Munich, Germany.
    20. Zhenxi Chen & Thomas Lux, 2018. "Estimation of Sentiment Effects in Financial Markets: A Simulated Method of Moments Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 711-744, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rpp:wpaper:1104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mathieu Lefebvre (email available below). General contact details of provider: https://edirc.repec.org/data/crulgbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.