IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bayesian Forecasting using Stochastic Search Variable Selection in a VAR Subject to Breaks

  • Gary Koop

    ()

    (University of Strathclyde, Glasgow, UK and The Rimini Centre for Economic Analysis, Italy)

  • Markus Jochmann

    (University of Strathclyde, Glasgow, UK and The Rimini Centre for Economic Analysis, Italy)

  • Rodney W. Strachan

    (University of Queensland, UK and The Rimini Centre for Economic Analysis, Italy)

This paper builds a model which has two extensions over a standard VAR. The first of these is stochastic search variable selection, which is an automatic model selection device which allows for coefficients in a possibly over-parameterized VAR to be set to zero. The second allows for an unknown number of structual breaks in the VAR parameters. We investigate the in-sample and forecasting performance of our model in an application involving a commonly-used US macro-economic data set. We find that, in-sample, these extensions clearly are warranted. In a recursive forecasting exercise, we find moderate improvements over a standard VAR, although most of these improvements are due to the use of stochastic search variable selection rather than the inclusion of breaks. Classification-JEL:

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.rcfea.org/RePEc/pdf/wp19_08.pdf
Download Restriction: no

Paper provided by The Rimini Centre for Economic Analysis in its series Working Paper Series with number 19-08.

as
in new window

Length:
Date of creation: Jan 2008
Date of revision: Jan 2008
Handle: RePEc:rim:rimwps:19-08
Contact details of provider: Postal: Via Patara, 3, 47921 Rimini (RN)
Phone: +390541434142
Fax: +39054155431
Web page: http://www.rcfea.orgEmail:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  2. John M Maheu & Thomas H McCurdy, 2007. "How useful are historical data for forecasting the long-run equity return distribution?," Working Papers tecipa-293, University of Toronto, Department of Economics.
  3. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
  4. Gary Koop & Simon M. Potter, 2001. "Are apparent findings of nonlinearity due to structural instability in economic time series?," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 38.
  5. Lubos Pastor & Robert F. Stambaugh, . "The Equity Premium and Structural Breaks," Rodney L. White Center for Financial Research Working Papers 11-00, Wharton School Rodney L. White Center for Financial Research.
  6. Gary Koop & Simon M. Potter, 2004. "Prior Elicitation in Multiple Change-point Models," Discussion Papers in Economics 04/26, Department of Economics, University of Leicester.
  7. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CESifo Working Paper Series 1237, CESifo Group Munich.
  8. Gael M. Martin, 2000. "US deficit sustainability: a new approach based on multiple endogenous breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 83-105.
  9. James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
  10. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
  11. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
  12. Andrew Ang & Geert Bekaert, 1998. "Regime Switches in Interest Rates," NBER Working Papers 6508, National Bureau of Economic Research, Inc.
  13. Chang-Jin Kim & Charles Nelson & Jeremy M. Piger, 2003. "The less volatile U.S. economy: a Bayesian investigation of timing, breadth, and potential explanations," Working Papers 2001-016, Federal Reserve Bank of St. Louis.
  14. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
  15. Francis X. Diebold & Peter Pauly, 1987. "The use of prior information in forecast combination," Special Studies Papers 218, Board of Governors of the Federal Reserve System (U.S.).
  16. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
  17. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
  18. Korobilis, Dimitris, 2008. "Forecasting in vector autoregressions with many predictors," MPRA Paper 21122, University Library of Munich, Germany.
  19. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 821-852.
  20. Valentina Corradi & Norman Swanson, 2004. "Predictive Density Evaluation," Departmental Working Papers 200419, Rutgers University, Department of Economics.
  21. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  22. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
  23. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
  24. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 763-789.
  25. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-26, February.
  26. Andersson, Michael K & Karlsson, Sune, 2007. "Bayesian forecast combination for VAR models," Working Paper Series 216, Sveriges Riksbank (Central Bank of Sweden).
  27. repec:cup:cbooks:9780521632423 is not listed on IDEAS
  28. repec:cup:cbooks:9780521634809 is not listed on IDEAS
  29. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:19-08. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.