IDEAS home Printed from
   My bibliography  Save this paper

Optimal Dynamic Contests


  • Lones Smith

    (University of Michigan, Department of Economics)

  • Giuseppe Moscarini

    (Yale University, Department of Economics)


We study the design of optimal incentives in a two-player dynamic contest. Two players continuously spend costly effort to attain a score lead, which is also affected by noise. The first player to reach a predetermined score difference (finish line) wins a prize. We focus on the choice of the optimal prize for the winner and on the optimal scoring rule, which penalizes or boosts the leader at each point in the game. We solve for a Symmetric Markov Perfect Equilibrium of the contest, and use it to evaluate a few possible principal's objectives. We find that equilibrium effort is always positive, increasing or hump-shaped in own lead, and the leader always exerts more effort than the follower. These results replicate in our continuous time, continuous state space setting those obtained by Harris and Vickers (1987) in a different discrete time, discrete state model. Our model is more tractable and affords our main innovation, the normative analysis of this game. Due to the strategic interaction, the optimal prize that maximizes expected total agents' output is finite even if effort costs and the value of the prize are of no concern to the principal. Too large a prize and the strategic complementarities of agents' efforts generate an initial war phase, followed by low effort thereafter and whenever the lead is not very small. We conjecture that the optimal scoring rule entails penalizing the leader to keep the laggard from giving up, despite the adverse ex ante incentives of this rule. We show how to solve numerically for the optimal scoring rule.

Suggested Citation

  • Lones Smith & Giuseppe Moscarini, 2007. "Optimal Dynamic Contests," 2007 Meeting Papers 249, Society for Economic Dynamics.
  • Handle: RePEc:red:sed007:249

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed007:249. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.