IDEAS home Printed from https://ideas.repec.org/p/qld/uqcepa/150.html
   My bibliography  Save this paper

Profit Efficiency and its Estimation

Author

Listed:

Abstract

n this article, we revisit the profit efficiency measurement theory and estimation. We derive a new theoretical result that shows the Nerlovian profit efficiency is a special case of the recently introduced general profit efficiency measure. We also present a new decomposition of profit efficiency. Finally, we also outline a simple way of estimating profit efficiency in the Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH) frameworks, while avoiding the computational intensity of linear programming and circumventing the lack of more detailed data.

Suggested Citation

  • Rolf Färe & Valentin Zelenyuk, 2020. "Profit Efficiency and its Estimation," CEPA Working Papers Series WP072020, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqcepa:150
    as

    Download full text from publisher

    File URL: https://economics.uq.edu.au/files/19614/WP072020.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:scandj:v:87:y:1985:i:4:p:594-604 is not listed on IDEAS
    2. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    3. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2008. "Asymptotics And Consistent Bootstraps For Dea Estimators In Nonparametric Frontier Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1663-1697, December.
    4. Rolf Fare & Shawna Grosskopf & Valentin Zelenyuk, 2008. "Aggregation of Nerlovian profit indicator," Applied Economics Letters, Taylor & Francis Journals, vol. 15(11), pages 845-847.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    7. Färe, Rolf & Zelenyuk, Valentin, 2019. "On Luenberger input, output and productivity indicators," Economics Letters, Elsevier, vol. 179(C), pages 72-74.
    8. Rolf Färe & Xinju He & Sungko Li & Valentin Zelenyuk, 2019. "A Unifying Framework for Farrell Profit Efficiency Measurement," Operations Research, INFORMS, vol. 67(1), pages 183-197, January.
    9. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    10. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    11. Rolf Färe & Xinju He & Sungko Li & Valentin Zelenyuk, 2016. "A Unifying Framework for Farrell Efficiency Measurement Coherent with Profit-maximizing Principle," CEPA Working Papers Series WP052016, School of Economics, University of Queensland, Australia.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Färe, Rolf & Zelenyuk, Valentin, 2020. "Profit efficiency: Generalization, business accounting and the role of convexity," Economics Letters, Elsevier, vol. 196(C).
    2. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    3. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    4. Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023. "Bayesian Artificial Neural Networks for frontier efficiency analysis," Journal of Econometrics, Elsevier, vol. 236(2).
    5. Cinzia Daraio & Léopold Simar & Paul W. Wilson, 2020. "Fast and efficient computation of directional distance estimators," Annals of Operations Research, Springer, vol. 288(2), pages 805-835, May.
    6. Léopold Simar & Paul W. Wilson, 2020. "Hypothesis testing in nonparametric models of production using multiple sample splits," Journal of Productivity Analysis, Springer, vol. 53(3), pages 287-303, June.
    7. Simar, Léopold & Wilson, Paul W., 2020. "Technical, allocative and overall efficiency: Estimation and inference," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1164-1176.
    8. Valentin Zelenyuk, 2021. "Performance Analysis: Economic Foundations & Trends," CEPA Working Papers Series WP162021, School of Economics, University of Queensland, Australia.
    9. Simar, Léopold & Zelenyuk, Valentin, 2020. "Improving finite sample approximation by central limit theorems for estimates from Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1002-1015.
    10. Bao Hoang Nguyen & Valentin Zelenyuk, 2021. "Aggregate efficiency of industry and its groups: the case of Queensland public hospitals," Empirical Economics, Springer, vol. 60(6), pages 2795-2836, June.
    11. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    12. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    13. Bao Hoang Nguyen & Valentin Zelenyuk, 2020. "Robust efficiency analysis of public hospitals in Queensland, Australia," CEPA Working Papers Series WP052020, School of Economics, University of Queensland, Australia.
    14. Ali Homayoni & Reza Fallahnejad & Farhad Hosseinzadeh Lotfi, 2022. "Cross Malmquist Productivity Index in Data Envelopment Analysis," 4OR, Springer, vol. 20(4), pages 567-602, December.
    15. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    16. Simar, Leopold & Wilson, Paul, 2018. "Technical, Allocative and Overall Efficiency: Inference and Hypothesis Testing," LIDAM Discussion Papers ISBA 2018018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Nguyen, Bao Hoang & Simar, Léopold & Zelenyuk, Valentin, 2022. "Data sharpening for improving central limit theorem approximations for data envelopment analysis–type efficiency estimators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1469-1480.
    18. Daraio, Cinzia & Simar, Leopold & Wilson, Paul, 2019. "Quality and its impact on efficiency," LIDAM Discussion Papers ISBA 2019004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    20. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.

    More about this item

    Keywords

    Profit Efficiency; Data Envelopment Analysis; DEA; Free Disposal Hull; FDH.;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqcepa:150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.