Empirical Bayes Regression With Many Regressors
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, Decembrie.
- HÄRDLE, Wolfgang & HART, Jeffrey & MARRON, Steve & TSYBAKOV, Alexander, 1992. "Bandwith choice for average derivative estimation," LIDAM Reprints CORE 977, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- S. J. Koopman & G. Mesters, 2017.
"Empirical Bayes Methods for Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 486-498, July.
- Siem Jan Koopman & Geert Mesters, 2014. "Empirical Bayes Methods for Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-061/III, Tinbergen Institute.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Antoine Djogbenou & Silvia Gonçalves & Benoit Perron, 2015. "Bootstrap inference in regressions with estimated factors and serial correlation," CIRANO Working Papers 2015s-20, CIRANO.
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Dias, Gustavo Fruet & Kapetanios, George, 2018.
"Estimation and forecasting in vector autoregressive moving average models for rich datasets,"
Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
- Gustavo Fruet Dias & George Kapetanios, 2014. "Estimation and Forecasting in Vector Autoregressive Moving Average Models for Rich Datasets," CREATES Research Papers 2014-37, Department of Economics and Business Economics, Aarhus University.
- Djogbenou, Antoine & Sufana, Razvan, 2024.
"Tests for group-specific heterogeneity in high-dimensional factor models,"
Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Antoine Djogbenou & Razvan Sufana, 2021. "Tests for Group-Specific Heterogeneity in High-Dimensional Factor Models," Papers 2109.09049, arXiv.org, revised Feb 2022.
- Kapetanios, George & Marcellino, Massimiliano, 2010.
"Factor-GMM estimation with large sets of possibly weak instruments,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
- George Kapetanios & Massimiliano Marcellino, 2006. "Factor-GMM Estimation with Large Sets of Possibly Weak Instruments," Working Papers 577, Queen Mary University of London, School of Economics and Finance.
- Marcellino, Massimiliano & Kapetanios, George, 2010. "Factor-GMM Estimation with Large Sets of Possibly Weak Instruments," CEPR Discussion Papers 7726, C.E.P.R. Discussion Papers.
- Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2016.
"Structural analysis with Multivariate Autoregressive Index models,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 332-348.
- Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2015. "Structural Analysis with Multivariate Autoregressive Index Models," CEPR Discussion Papers 10801, C.E.P.R. Discussion Papers.
- In Choi, 2011. "Efficient Estimation of Nonstationary Factor Models," Working Papers 1101, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Jun 2011.
- Matteo Barigozzi & Matteo Luciani, 2019.
"Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,"
Papers
1910.03821, arXiv.org, revised Sep 2024.
- Matteo Barigozzi & Matteo Luciani, 2024. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Finance and Economics Discussion Series 2024-086, Board of Governors of the Federal Reserve System (U.S.).
- Barigozzi, Matteo & Hallin, Marc, 2020.
"Generalized dynamic factor models and volatilities: Consistency, rates, and prediction intervals,"
Journal of Econometrics, Elsevier, vol. 216(1), pages 4-34.
- Matteo Barigozzi & Marc Hallin, 2018. "Generalized Dynamic Factor Models and Volatilities: Consistency, Rates, and Prediction Intervals," Working Papers ECARES 2018-33, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Marc Hallin, 2018. "Generalized Dynamic Factor Models and Volatilities: Consistency, rates, and prediction intervals," Papers 1811.10045, arXiv.org, revised Jul 2019.
- Juan José Echavarría & Andrés González, 2012.
"Choques internacionales reales y financieros y su impacto sobre la economía colombiana,"
Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 14-66, December.
- Juan José Echavarría & Andrés González & Enrique López & Norberto Rodríguez, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 30(69), pages 14-66, December.
- Juan José Echavarría & Andrés González & Enrique López & Norberto Rodíguez, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Borradores de Economia 728, Banco de la Republica de Colombia.
- Juan José Echavarría & Andrés gonzález & Enrique López & Norberto Rodríguez, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Borradores de Economia 9884, Banco de la Republica.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Hertrich Markus, 2019.
"A Novel Housing Price Misalignment Indicator for Germany,"
German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.
- Markus Hertrich, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 759-794, November.
- Hertrich, Markus, 2019. "A novel housing price misalignment indicator for Germany," Discussion Papers 31/2019, Deutsche Bundesbank.
- Čížek, Pavel, 2008.
"General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models,"
Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Discussion Paper 2004-130, Tilburg University, Center for Economic Research.
- Cizek, P., 2004. "General Trimmed Estimation : Robust Approach to Nonlinear and Limited Dependent Variable Models," Other publications TiSEM 646b48cc-6bdc-4b93-bc20-7, Tilburg University, School of Economics and Management.
- Michelacci, Claudio & Zaffaroni, Paolo, 2000.
"(Fractional) beta convergence,"
Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
- Claudio Michelacci & Paolo Zaffaroni, 1998. "(Fractional) Beta Convergence," Working Papers wp1998_9803, CEMFI.
- Michelacci, C. & Zaffaroni, P., 2000. "(Fractional) Beta Convergence," Papers 383, Banca Italia - Servizio di Studi.
- Michelacci, C. & Zaffaroni, P., 1998. "(Fractional) Beta Convergence," Papers 9803, Centro de Estudios Monetarios Y Financieros-.
- Claudio Michelacci & Paolo Zaffaroni, 2000. "(Fractional) Beta Convergence," Temi di discussione (Economic working papers) 383, Bank of Italy, Economic Research and International Relations Area.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
- David Havrlant & Peter Tóth & Julia Wörz, 2016. "On the optimal number of indicators – nowcasting GDP growth in CESEE," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue 4, pages 54-72.
- Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022.
"Eigenvalue tests for the number of latent factors in short panels,"
Swiss Finance Institute Research Paper Series
22-81, Swiss Finance Institute.
- Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
More about this item
Keywords
Large model regression; equivariant estimation; minimax estimation; shrinkage estimation;All these keywords.
JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pri:econom:2004-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bobray Bordelon (email available below). General contact details of provider: https://edirc.repec.org/data/deprius.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.