IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/30148.html
   My bibliography  Save this paper

The predictive accuracy of credit ratings: Measurement and statistical inference

Author

Listed:
  • Orth, Walter

Abstract

Credit ratings are ordinal predictions for the default risk of an obligor. To evaluate the accuracy of such predictions commonly used measures are the Accuracy Ratio or, equivalently, the Area under the ROC curve. The disadvantage of these measures is that they treat default as a binary variable thereby neglecting the timing of the default events and also not using the full information from censored observations. We present an alternative measure that is related to the Accuracy Ratio but does not suffer from these drawbacks. As a second contribution, we study statistical inference for the Accuracy Ratio and the proposed measure in the case of multiple cohorts of obligors with overlapping lifetimes. We derive methods that use more sample information and lead to more powerful tests than alternatives that filter just the independent part of the dataset. All procedures are illustrated in the empirical section using a dataset of S\&P Long Term Credit Ratings.

Suggested Citation

  • Orth, Walter, 2010. "The predictive accuracy of credit ratings: Measurement and statistical inference," MPRA Paper 30148, University Library of Munich, Germany, revised 16 Feb 2011.
  • Handle: RePEc:pra:mprapa:30148
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/30148/1/MPRA_paper_30148.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter Krämer & André Güttler, 2008. "On comparing the accuracy of default predictions in the rating industry," Empirical Economics, Springer, vol. 34(2), pages 343-356, March.
    2. Roger Newson, 2006. "Confidence intervals for rank statistics: Somers' D and extensions," Stata Journal, StataCorp LP, vol. 6(3), pages 309-334, September.
    3. Andre Güttler & Peter Raupach, 2010. "The Impact of Downward Rating Momentum," Journal of Financial Services Research, Springer;Western Finance Association, vol. 37(1), pages 1-23, February.
    4. C. A. Field & A. H. Welsh, 2007. "Bootstrapping clustered data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 369-390, June.
    5. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orth, Walter, 2012. "The predictive accuracy of credit ratings: Measurement and statistical inference," International Journal of Forecasting, Elsevier, vol. 28(1), pages 288-296.
    2. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    3. Andre Güttler & Peter Raupach, 2010. "The Impact of Downward Rating Momentum," Journal of Financial Services Research, Springer;Western Finance Association, vol. 37(1), pages 1-23, February.
    4. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    5. Alexander B. Matthies, 2013. "Empirical Research on Corporate Credit-Ratings: A Literature Review," SFB 649 Discussion Papers SFB649DP2013-003, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Kurt Hornik & Rainer Jankowitsch & Manuel Lingo & Stefan Pichler & Gerhard Winkler, 2010. "Determinants of heterogeneity in European credit ratings," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 24(3), pages 271-287, September.
    7. Simon Cornée, 2014. "Soft Information and Default Prediction in Cooperative and Social Banks," Journal of Entrepreneurial and Organizational Diversity, European Research Institute on Cooperative and Social Enterprises, vol. 3(1), pages 89-103, June.
    8. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    9. Schechtman, Ricardo, 2013. "Default matrices: A complete measurement of banks’ consumer credit delinquency," Journal of Financial Stability, Elsevier, vol. 9(4), pages 460-474.
    10. P. Lencastre & F. Raischel & P. G. Lind, 2014. "The effect of the number of states on the validity of credit ratings," Papers 1409.2661, arXiv.org.
    11. José Eduardo Gómez González & Ines Paola Orozco Hinojosa, 2010. "Un modelo de alerta temprana para el sistema financiero colombiano," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 28(62), pages 124-147, June.
    12. N. Jonker, 2002. "Credit Ratings of the Banking Sector," WO Research Memoranda (discontinued) 714, Netherlands Central Bank, Research Department.
    13. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    14. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    15. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    16. Jose E. Gómez & Paola Morales & Fernando Pineda & nzamudgo@banrep.gov.co, 2007. "An Alternative Methodology for Estimating Credit Quality Transition Matrices," Borradores de Economia 478, Banco de la Republica de Colombia.
    17. Weißbach, Rafael & Mollenhauer, Thomas, 2011. "Modelling Rating Transitions," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48698, Verein für Socialpolitik / German Economic Association.
    18. Correa, Arnildo & Marins, Jaqueline & Neves, Myrian & da Silva, Antonio Carlos, 2014. "Credit Default and Business Cycles: An Empirical Investigation of Brazilian Retail Loans," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 68(3), September.
    19. Ichiro Kunitsugu & Masayuki Okuda & Shinichi Sugiyama & Norikazu Yoshitake & Yukio Tanizawa & Satoshi Sasaki & Tatsuya Hobara, 2012. "Meat intake frequency and anemia in Japanese children and adolescents," Nursing & Health Sciences, John Wiley & Sons, vol. 14(2), pages 197-203, June.
    20. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.

    More about this item

    Keywords

    Ratings; predictive accuracy; Accuracy Ratio; Harrell's C; overlapping lifetimes;
    All these keywords.

    JEL classification:

    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30148. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.