IDEAS home Printed from
   My bibliography  Save this paper

Geoadditive latent variable modelling of count data on multiple sexual partnering in Nigeria


  • Adebayo, Samson B.
  • Fahrmeir, Ludwig
  • Seiler, Christian


The 2005 National HIV/AIDS and Reproductive Health Survey in Nigeria provides evidence that multiple sexual partnering increases the risk of contracting HIV and other sexually transmitted diseases. Therefore, partner reduction is one of the prevention strategies to accomplish the Millenium development goal of halting and reversing the spread of HIV/AIDS. In order to explore possible association between sexual partnering and some risk factors, this paper utilizes a novel Bayesian geoadditive latent variable model for count outcomes. This allows us to simultaneously analyze linear and nonlinear effects of covariates as well as spatial variations of one or more latent variables, such as attitude towards multiple partnering, which in turn directly influences the multivariate observable outcomes or indicators. Influence of demographic factors such as age, gender, locality, state of residence, educational attainment, etc., and knowledge about HIV/AIDS on attitude towards multiple partnering is also investigated. Results can provide insights to policy makers with the aim of reducing the spread of HIV and AIDS among the Nigerian populace through partner reduction.

Suggested Citation

  • Adebayo, Samson B. & Fahrmeir, Ludwig & Seiler, Christian, 2009. "Geoadditive latent variable modelling of count data on multiple sexual partnering in Nigeria," MPRA Paper 27839, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:27839

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Ludwig Fahrmeir & Alexander Raach, 2007. "A Bayesian Semiparametric Latent Variable Model for Mixed Responses," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 327-346, September.
    2. Sylvia FrüHwirth-Schnatter & Helga Wagner, 2006. "Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling," Biometrika, Biometrika Trust, vol. 93(4), pages 827-841, December.
    3. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    4. Quinn, Kevin M., 2004. "Bayesian Factor Analysis for Mixed Ordinal and Continuous Responses," Political Analysis, Cambridge University Press, vol. 12(04), pages 338-353, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Christian Seiler, 2013. "Nonresponse in Business Tendency Surveys: Theoretical Discourse and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 52, June.
    2. Ezra Gayawan & Samson B. Adebayo, 2013. "A Bayesian semiparametric multilevel survival modelling of age at first birth in Nigeria," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(45), pages 1339-1372, June.
    3. Bayerstadler, Andreas & van Dijk, Linda & Winter, Fabian, 2016. "Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 244-252.

    More about this item


    factor loading; geographical variations; latent variable model; MCMC; Nigeria; semiparametric Poisson model;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • I1 - Health, Education, and Welfare - - Health


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:27839. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.