IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Modelling and forecasting volatility of East Asian Newly Industrialized Countries and Japan stock markets with non-linear models

  • Guidi, Francesco

This paper explores the forecasting performances of several non-linear models, namely GARCH, EGARCH, APARCH used with three distributions, namely the Gaussian normal, the Student-t and Generalized Error Distribution (GED). In order to evaluate the performance of the competing models we used the standard loss functions that is the Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error and the Theil Inequality Coefficient. Our result show that the asymmetric GARCH family models are generally the best for forecasting NICs indices. We also find that both Root Mean Squared Error and Mean Absolute Error forecast statistic measures tend to choose models that were estimated assuming the normal distribution, while the other two remaining forecast measures privilege models with t-student and GED distribution.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/19851/1/MPRA_paper_19851.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 19851.

as
in new window

Length:
Date of creation: Jan 2010
Date of revision:
Handle: RePEc:pra:mprapa:19851
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  2. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
  3. Jun Yu, 2002. "Forecasting volatility in the New Zealand stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 12(3), pages 193-202.
  4. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
  5. Thavaneswaran, A. & Appadoo, S.S. & Peiris, S., 2005. "Forecasting volatility," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 1-10, November.
  6. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  7. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
  8. McCurdy, Thomas H & Morgan, Ieuan G, 1988. "Testing the Martingale Hypothesis in Deutsche Mark Futures with Models Specifying the Form of Heteroscedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(3), pages 187-202, July-Sept.
  9. Baillie, Richard T & Bollerslev, Tim, 1989. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 297-305, July.
  10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  11. Kanas, Angelos & Yannopoulos, Andreas, 2001. "Comparing linear and nonlinear forecasts for stock returns," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 383-398, December.
  12. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  13. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-34, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:19851. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.