IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/15510.html
   My bibliography  Save this paper

Low-Pass Filter Design using Locally Weighted Polynomial Regression and Discrete Prolate Spheroidal Sequences

Author

Listed:
  • Proietti, Tommaso
  • Luati, Alessandra

Abstract

The paper concerns the design of nonparametric low-pass filters that have the property of reproducing a polynomial of a given degree. Two approaches are considered. The first is locally weighted polynomial regression (LWPR), which leads to linear filters depending on three parameters: the bandwidth, the order of the fitting polynomial, and the kernel. We find a remarkable linear (hyperbolic) relationship between the cutoff period (frequency) and the bandwidth, conditional on the choices of the order and the kernel, upon which we build the design of a low-pass filter. The second hinges on a generalization of the maximum concentration approach, leading to filters related to discrete prolate spheroidal sequences (DPSS). In particular, we propose a new class of lowpass filters that maximize the concentration over a specified frequency range, subject to polynomial reproducing constraints. The design of generalized DPSS filters depends on three parameters: the bandwidth, the polynomial order, and the concentration frequency. We discuss the properties of the corresponding filters in relation to the LWPR filters, and illustrate their use for the design of low-pass filters by investigating how the three parameters are related to the cutoff frequency.

Suggested Citation

  • Proietti, Tommaso & Luati, Alessandra, 2009. "Low-Pass Filter Design using Locally Weighted Polynomial Regression and Discrete Prolate Spheroidal Sequences," MPRA Paper 15510, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:15510
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/15510/2/MPRA_paper_15510.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Tommaso Proietti & Alessandra Luati, 2008. "Real Time Estimation in Local Polynomial Regression, with Application to Trend-Cycle Analysis," CEIS Research Paper 112, Tor Vergata University, CEIS, revised 14 Jul 2008.
    2. Lii, K.S. & Rosenblatt, M., 2008. "Prolate spheroidal spectral estimates," Statistics & Probability Letters, Elsevier, vol. 78(11), pages 1339-1348, August.
    3. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Trend filters; Kernels; Concentration; Filter Design.;

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15510. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.