IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/123164.html
   My bibliography  Save this paper

Recovering Unobserved Network Links from Aggregated Relational Data: Discussions on Bayesian Latent Surface Modeling and Penalized Regression

Author

Listed:
  • Tseng, Yen-hsuan

Abstract

Accurate network data are essential in fields such as economics, finance, sociology, epidemiology, and computer science. However, real-world constraints often prevent researchers from collect- ing a complete adjacency matrix, compelling them to rely on partial or aggregated information. One widespread example is Aggregated Relational Data (ARD), where respondents or institutions merely report the number of links they have to nodes possessing certain traits, rather than enu- merating all neighbors explicitly. This dissertation provides an in-depth examination of two major frameworks for reconstruct- ing networks from ARD: the Bayesian latent surface model and frequentist penalized regression ap- proaches. We supplement the original discussion with additional theoretical considerations on identifiability, consistency, and potential misreporting mechanisms. We also incorporate robust estimation techniques and references to privacy-preserving strategies such as differential privacy. By embedding nodes in a hyperspherical space, the Bayesian method captures geometric distance- based link formation, while the penalized regression approach casts unknown edges in a high- dimensional optimization problem, enabling scalability and the incorporation of covariates. Sim- ulations explore the effects of trait design, measurement error, and sample size. Real-world ap- plications illustrate the potential for partially observed networks in domains like financial risk, social recommendation systems, and epidemic contact tracing, complementing the original text with deeper investigations of large-scale inference challenges. Our aim is to show that even though ARD may be coarser than full adjacency data, it retains sub- stantial information about network structures, allowing reasonably accurate inference at scale. We conclude by discussing how adaptive trait selection, hybrid geometry-penalty methods, and privacy- aware data sharing can further advance this field. This enhanced treatment underscores the prac- tical relevance and theoretical rigor of ARD-based network inference.

Suggested Citation

  • Tseng, Yen-hsuan, 2025. "Recovering Unobserved Network Links from Aggregated Relational Data: Discussions on Bayesian Latent Surface Modeling and Penalized Regression," MPRA Paper 123164, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:123164
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/123164/1/MPRA_paper_123164.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    2. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    2. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    3. Yang, Lu & Hamori, Shigeyuki, 2023. "Modeling the global sovereign credit network under climate change," International Review of Financial Analysis, Elsevier, vol. 87(C).
    4. Zareei, Abalfazl, 2019. "Network origins of portfolio risk," Journal of Banking & Finance, Elsevier, vol. 109(C).
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Cem Iskender Aydin & Begum Ozkaynak & Beatriz Rodríguez-Labajos & Taylan Yenilmez, 2017. "Network effects in environmental justice struggles: An investigation of conflicts between mining companies and civil society organizations from a network perspective," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
    7. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    8. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Green, Christopher & Bai, Ye & Murinde, Victor & Ngoka, Kethi & Maana, Isaya & Tiriongo, Samuel, 2016. "Overnight interbank markets and the determination of the interbank rate: A selective survey," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 149-161.
    10. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    11. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    12. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    13. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    14. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    15. Tapio Riepponen & Mikko Moilanen & Jaakko Simonen, 2023. "Themes of resilience in the economics literature: A topic modeling approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(2), pages 326-356, April.
    16. Wu, Tao & Gao, Xiangyun & An, Sufang & Liu, Siyao, 2021. "Time-varying pattern causality inference in global stock markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    17. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    18. van de Leur, Michiel C.W. & Lucas, André & Seeger, Norman J., 2017. "Network, market, and book-based systemic risk rankings," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 84-90.
    19. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    20. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.

    More about this item

    Keywords

    Aggregated Relational Data (ARD) Network Inference Bayesian Latent Surface Model (BLSM) Penalized Regression Hyperspherical Embedding Differential Privacy Federated Learning Privacy-Preserving Networks Robust Estimation Misreporting in Networks High-Dimensional Optimization Sparse Networks Social Recommendation Systems Financial Interbank Networks Epidemic Contact Tracing;

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:123164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.