IDEAS home Printed from https://ideas.repec.org/p/ota/busdis/10252-5386.html
   My bibliography  Save this paper

A further addendum to "Some thoughts on the 2-approximation algorithm for knapsack problems: A survey"

Author

Listed:
  • Iida, Hiroshi

Abstract

No abstract is available for this item.

Suggested Citation

  • Iida, Hiroshi, 2014. "A further addendum to "Some thoughts on the 2-approximation algorithm for knapsack problems: A survey"," ビジネス創造センターディスカッション・ペーパー (Discussion papers of the Center for Business Creation) 10252/5386, Otaru University of Commerce.
  • Handle: RePEc:ota:busdis:10252/5386
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Caprara, Alberto & Kellerer, Hans & Pferschy, Ulrich & Pisinger, David, 2000. "Approximation algorithms for knapsack problems with cardinality constraints," European Journal of Operational Research, Elsevier, vol. 123(2), pages 333-345, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aardal, Karen & van den Berg, Pieter L. & Gijswijt, Dion & Li, Shanfei, 2015. "Approximation algorithms for hard capacitated k-facility location problems," European Journal of Operational Research, Elsevier, vol. 242(2), pages 358-368.
    2. Elif Akçalı & Alper Üngör & Reha Uzsoy, 2005. "Short‐term capacity allocation problem with tool and setup constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 754-764, December.
    3. Yalçın Akçay & Haijun Li & Susan Xu, 2007. "Greedy algorithm for the general multidimensional knapsack problem," Annals of Operations Research, Springer, vol. 150(1), pages 17-29, March.
    4. Jinwen Ou & Xueling Zhong, 2017. "Order acceptance and scheduling with consideration of service level," Annals of Operations Research, Springer, vol. 248(1), pages 429-447, January.
    5. Talla Nobibon, Fabrice & Leus, Roel & Spieksma, Frits C.R., 2011. "Optimization models for targeted offers in direct marketing: Exact and heuristic algorithms," European Journal of Operational Research, Elsevier, vol. 210(3), pages 670-683, May.
    6. Yoon, Yourim & Kim, Yong-Hyuk & Moon, Byung-Ro, 2012. "A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 366-376.
    7. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    8. Absi, Nabil & Dauzère-Pérès, Stéphane & Kedad-Sidhoum, Safia & Penz, Bernard & Rapine, Christophe, 2013. "Lot sizing with carbon emission constraints," European Journal of Operational Research, Elsevier, vol. 227(1), pages 55-61.
    9. Mu'alem, Ahuva & Nisan, Noam, 2008. "Truthful approximation mechanisms for restricted combinatorial auctions," Games and Economic Behavior, Elsevier, vol. 64(2), pages 612-631, November.
    10. Klamler, Christian & Pferschy, Ulrich & Ruzika, Stefan, 2012. "Committee selection under weight constraints," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 48-56.
    11. Darmann, Andreas & Nicosia, Gaia & Pferschy, Ulrich & Schauer, Joachim, 2014. "The Subset Sum game," European Journal of Operational Research, Elsevier, vol. 233(3), pages 539-549.
    12. R. K. Ahuja & J. B. Orlin & S. Pallottino & M. P. Scaparra & M. G. Scutellà, 2004. "A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem," Management Science, INFORMS, vol. 50(6), pages 749-760, June.
    13. Kung, Ling-Chieh & Liao, Wei-Hung, 2018. "An approximation algorithm for a competitive facility location problem with network effects," European Journal of Operational Research, Elsevier, vol. 267(1), pages 176-186.
    14. Luca Bertazzi, 2012. "Minimum and Worst-Case Performance Ratios of Rollout Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 378-393, February.
    15. Della Croce, Federico & Salassa, Fabio & Scatamacchia, Rosario, 2017. "A new exact approach for the 0–1 Collapsing Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 260(1), pages 56-69.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ota:busdis:10252/5386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Miura, Chiho (email available below). General contact details of provider: https://edirc.repec.org/data/deotajp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.