IDEAS home Printed from https://ideas.repec.org/p/osk/wpaper/2503.html
   My bibliography  Save this paper

Analyzing Collusion Using Set-Identified Marginal Cost Functions

Author

Listed:
  • Seiichiro Mizuta

    (Kobe University, Graduate School of Business Administration.)

  • Masato Nishiwaki

    (University of Osaka, Graduate School of Economics.)

Abstract

Wepropose an approach for analyzing markets in which firms are (suspected of) colluding. Our approach, which is based on set-identified marginal cost functions, enables us to screen for collusion and measure potential welfare losses caused by non-competitive behavior. The key idea is to exploit supernumerary (or excluded) instrumental variables that provide moment restrictions to falsify hypotheses about firm conduct and eliminate cost parameters implied by the falsified hypotheses. The resulting set of cost parameters that remain unfalsified under these restrictions functions as a screening tool for collusion. When competitive behavior is falsified, the corresponding parameter is excluded from the identified set. Additionally, the identified set can be used to measure potential welfare losses when competitive behavior is ruled out. This type of counterfactual welfare analysis is otherwise extremely difficult or nearly impossible to conduct.

Suggested Citation

  • Seiichiro Mizuta & Masato Nishiwaki, 2025. "Analyzing Collusion Using Set-Identified Marginal Cost Functions," Discussion Papers in Economics and Business 25-03, Osaka University, Graduate School of Economics.
  • Handle: RePEc:osk:wpaper:2503
    as

    Download full text from publisher

    File URL: https://www2.econ.osaka-u.ac.jp/econ_society/dp/2503.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    2. Menzel, Konrad, 2014. "Consistent estimation with many moment inequalities," Journal of Econometrics, Elsevier, vol. 182(2), pages 329-350.
    3. Melanie Arntz & Simon Lo & Ralf Wilke, 2014. "Bounds analysis of competing risks: a non-parametric evaluation of the effect of unemployment benefits on migration," Empirical Economics, Springer, vol. 46(1), pages 199-228, February.
    4. Laura Coroneo & Valentina Corradi & Paulo Santos Monteiro, 2018. "Testing for optimal monetary policy via moment inequalities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 780-796, September.
    5. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    6. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    7. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.
    8. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    9. Molinari, Francesca, 2020. "Microeconometrics with partial identification," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 355-486, Elsevier.
    10. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    11. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    12. Bontemps, Christian & Kumar, Rohit, 2020. "A geometric approach to inference in set-identified entry games," Journal of Econometrics, Elsevier, vol. 218(2), pages 373-389.
    13. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    14. repec:cep:stiecm:/2014/574 is not listed on IDEAS
    15. Laurent Davezies & Xavier D’Haultfoeuille & Louise Laage, 2025. "Identification and Estimation of Average Causal Effects in Fixed Effects Logit Models," Working Papers 2025-02, Center for Research in Economics and Statistics.
    16. Daniel Cerquera & François Laisney & Hannes Ullrich, 2012. "Considerations on partially identified regression models," Working Papers of BETA 2012-07, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    17. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    18. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    19. repec:cwl:cwldpp:1761rr is not listed on IDEAS
    20. Kaido, Hiroaki, 2016. "A dual approach to inference for partially identified econometric models," Journal of Econometrics, Elsevier, vol. 192(1), pages 269-290.
    21. Isaiah Andrews & Jonathan Roth & Ariel Pakes, 2023. "Inference for Linear Conditional Moment Inequalities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(6), pages 2763-2791.
    22. Sam Asher & Paul Novosad & Charlie Rafkin, 2018. "Partial Identification of Expectations with Interval Data," Papers 1802.10490, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C57 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Econometrics of Games and Auctions
    • L40 - Industrial Organization - - Antitrust Issues and Policies - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osk:wpaper:2503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The Economic Society of Osaka University (email available below). General contact details of provider: https://edirc.repec.org/data/feosujp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.