IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/ksfyr.html

The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective

Author

Listed:
  • Kruschke, John K.
  • Liddell, Torrin

Abstract

In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty, on the other hand. Among frequentists in psychology a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming, 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.

Suggested Citation

  • Kruschke, John K. & Liddell, Torrin, 2016. "The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective," OSF Preprints ksfyr, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:ksfyr
    DOI: 10.31219/osf.io/ksfyr
    as

    Download full text from publisher

    File URL: https://osf.io/download/582bc15fb83f6901fa77ee7e/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/ksfyr?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Torrin M. Liddell & John K. Kruschke, 2014. "Ostracism and fines in a public goods game with accidental contributions: The importance of punishment type," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 9(6), pages 523-547, November.
    2. Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
    3. David J. Spiegelhalter & Laurence S. Freedman & Mahesh K. B. Parmar, 1994. "Bayesian Approaches to Randomized Trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(3), pages 357-387, May.
    4. repec:cup:judgdm:v:9:y:2014:i:6:p:523-547 is not listed on IDEAS
    5. Poole, C., 1987. "Beyond the confidence interval," American Journal of Public Health, American Public Health Association, vol. 77(2), pages 195-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:osf:osfxxx:ksfyr_v1 is not listed on IDEAS
    2. Xuhua Liu & Xingzhong Xu, 2016. "Confidence distribution inferences in one-way random effects model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 59-74, March.
    3. Martin E. Backhouse, 1998. "An investment appraisal approach to clinical trial design," Health Economics, John Wiley & Sons, Ltd., vol. 7(7), pages 605-619, November.
    4. James C. Felli & Gordon B. Hazen, 1998. "Sensitivity Analysis and the Expected Value of Perfect Information," Medical Decision Making, , vol. 18(1), pages 95-109, January.
    5. Eugenio Melilli & Piero Veronese, 2024. "Confidence distributions and hypothesis testing," Statistical Papers, Springer, vol. 65(6), pages 3789-3820, August.
    6. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    7. Andrew Briggs & Paul Fenn, 1998. "Confidence intervals or surfaces? Uncertainty on the cost‐effectiveness plane," Health Economics, John Wiley & Sons, Ltd., vol. 7(8), pages 723-740, December.
    8. Peter F. Thall & Richard M. Simon & Yu Shen, 2000. "Approximate Bayesian Evaluation of Multiple Treatment Effects," Biometrics, The International Biometric Society, vol. 56(1), pages 213-219, March.
    9. David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.
    10. Charles F. Manski, 2018. "Reasonable patient care under uncertainty," Health Economics, John Wiley & Sons, Ltd., vol. 27(10), pages 1397-1421, October.
    11. David R. Bickel, 2024. "Bayesian and frequentist inference derived from the maximum entropy principle with applications to propagating uncertainty about statistical methods," Statistical Papers, Springer, vol. 65(8), pages 5389-5407, October.
    12. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    13. David M. Rindskopf & William R. Shadish & M. H. Clark, 2018. "Using Bayesian Correspondence Criteria to Compare Results From a Randomized Experiment and a Quasi-Experiment Allowing Self-Selection," Evaluation Review, , vol. 42(2), pages 248-280, April.
    14. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    15. Nandini Dendukuri & Lawrence Joseph, 2001. "Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests," Biometrics, The International Biometric Society, vol. 57(1), pages 158-167, March.
    16. Jonas Beck & Arne C. Bathke, 2024. "A unifying framework for rank and pseudo-rank based inference using nonparametric confidence distributions," Statistical Papers, Springer, vol. 65(3), pages 1233-1257, May.
    17. Lu Tian & Rui Wang & Tianxi Cai & Lee-Jen Wei, 2011. "The Highest Confidence Density Region and Its Usage for Joint Inferences about Constrained Parameters," Biometrics, The International Biometric Society, vol. 67(2), pages 604-610, June.
    18. Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
    19. Miguel A. Negrín & Francisco J. Vázquez-Polo & María Martel & Elías Moreno & Francisco J. Girón, 2010. "Bayesian Variable Selection in Cost-Effectiveness Analysis," IJERPH, MDPI, vol. 7(4), pages 1-20, April.
    20. Tore Schweder, 2003. "Abundance Estimation from Multiple Photo Surveys: Confidence Distributions and Reduced Likelihoods for Bowhead Whales off Alaska," Biometrics, The International Biometric Society, vol. 59(4), pages 974-983, December.
    21. Andrea Ongaro & Sonia Migliorati & Roberto Ascari & Enrico Ripamonti, 2024. "Testing practical relevance of treatment effects," Statistical Papers, Springer, vol. 65(7), pages 4121-4145, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:ksfyr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.