IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/e28mq_v1.html
   My bibliography  Save this paper

Phase Transitions in Financial Markets: An Ising Model Approach to Simulating Market Crashes

Author

Listed:
  • Attar, Shoaib
  • Kodali, Chaitrathejasvi

Abstract

In this study, we explore the dynamics of financial markets by adapting the Ising model—a cornerstone of statistical physics—to simulate market crashes. By representing individual market participants as spins on a lattice, our model captures local interactions that collectively give rise to emergent phenomena analogous to phase transitions observed in magnetic systems. We investigate how varying interaction strengths, external influences, and system “temperature” affect the stability of market conditions, particularly in the vicinity of critical thresholds. Through extensive simulations, our findings reveal that minor perturbations in local agent behavior can trigger cascading effects, ultimately precipitating market crashes. These results not only demonstrate the potential of physics-inspired models to mimic complex market dynamics but also provide insights into the predictive power of critical phenomena in anticipating systemic financial instabilities. The implications of this work extend to both the theoretical understanding of market behavior and the development of more robust risk management strategies.

Suggested Citation

  • Attar, Shoaib & Kodali, Chaitrathejasvi, 2025. "Phase Transitions in Financial Markets: An Ising Model Approach to Simulating Market Crashes," OSF Preprints e28mq_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:e28mq_v1
    DOI: 10.31219/osf.io/e28mq_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/6808d707c14d920656b7d40b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/e28mq_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    2. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    3. Stefan Bornholdt, 2001. "Expectation Bubbles In A Spin Model Of Markets: Intermittency From Frustration Across Scales," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(05), pages 667-674.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    2. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    3. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    4. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    5. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    6. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2014. "Partial correlation analysis: Applications for financial markets," Papers 1402.1405, arXiv.org.
    7. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    8. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    9. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    10. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    11. Jean-Philippe Bouchaud & Matteo Marsili & Jean-Pierre Nadal, 2023. "Application of spin glass ideas in social sciences, economics and finance," Papers 2306.16165, arXiv.org.
    12. Marco D'Errico & Gulnur Muradoglu & Silvana Stefani & Giovanni Zambruno, 2014. "Opinion Dynamics and Price Formation: a Nonlinear Network Model," Papers 1408.0308, arXiv.org.
    13. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    14. Szymon Chudziak, 2025. "Studying economic complexity with agent-based models: advances, challenges and future perspectives," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 20(2), pages 413-449, April.
    15. Tetsuya Takaishi, 2014. "Analysis of Spin Financial Market by GARCH Model," Papers 1409.0118, arXiv.org.
    16. Damien Challet, 2016. "Regrets, learning and wisdom," Papers 1605.01052, arXiv.org.
    17. Mateus F. B. Granha & Andr'e L. M. Vilela & Chao Wang & Kenric P. Nelson & H. Eugene Stanley, 2022. "Opinion Dynamics in Financial Markets via Random Networks," Papers 2201.07214, arXiv.org.
    18. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    19. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    20. Ernest Dautovic, 2019. "Has Regulatory Capital Made Banks Safer? Skin in the Game vs Moral Hazard," Cahiers de Recherches Economiques du Département d'économie 19.03, Université de Lausanne, Faculté des HEC, Département d’économie.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:e28mq_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.