IDEAS home Printed from https://ideas.repec.org/p/mtl/montde/9815.html
   My bibliography  Save this paper

Asymptotic Approximations in the Near-Integrated Model with a Non-Zero Initial Condition

Author

Listed:
  • PERRON, Pierre
  • VODOUNOU, Cosme

Abstract

This paper considers various asymptotic approximations in the near-integrated firstorder autoregressive model with a non-zero initial condition. We first extend the work of Knight and Satchell (1993), who considered the random walk case with a zero initial condition, to derive the expansion of the relevant joint moment generating function in this more general framework. We also consider, as alternative approximations, the stochastic expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We assess how these alternative methods provide or not an adequate approximation to the finite-sample distribution of the least-squares estimator in a first-order autoregressive model. The results show that, when the initial condition is non-zero, Perron's (1991) continuous time approximation performs very well while the others only offer improvements when the initial condition is zero.

Suggested Citation

  • PERRON, Pierre & VODOUNOU, Cosme, 1998. "Asymptotic Approximations in the Near-Integrated Model with a Non-Zero Initial Condition," Cahiers de recherche 9815, Universite de Montreal, Departement de sciences economiques.
  • Handle: RePEc:mtl:montde:9815
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1866/464
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perron, Pierre, 1996. "The adequacy of asymptotic approximations in the near-integrated autoregressive model with dependent errors," Journal of Econometrics, Elsevier, vol. 70(2), pages 317-350, February.
    2. Phillips, Peter C B, 1977. "Approximations to Some Finite Sample Distributions Associated with a First-Order Stochastic Difference Equation," Econometrica, Econometric Society, vol. 45(2), pages 463-485, March.
    3. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212 Elsevier.
    4. Phillips, P. C. B., 1987. "Asymptotic Expansions in Nonstationary Vector Autoregressions," Econometric Theory, Cambridge University Press, vol. 3(01), pages 45-68, February.
    5. Perron, Pierre, 1991. "A Continuous Time Approximation to the Unstable First-Order Autoregressive Process: The Case without an Intercept," Econometrica, Econometric Society, vol. 59(1), pages 211-236, January.
    6. Perron, Pierre, 1991. "A Continuous Time Approximation to the Stationary First-Order Autoregressive Model," Econometric Theory, Cambridge University Press, vol. 7(02), pages 236-252, June.
    7. Knight, J.L. & Satchell, S.E., 1993. "Asymptotic Expansions for Random Walks with Normal Errors," Econometric Theory, Cambridge University Press, vol. 9(03), pages 363-376, June.
    8. Satchell, Stephen Ellwood, 1984. "Approximation to the Finite Sample Distribution for Nonstable First Order Stochastic Difference Equations," Econometrica, Econometric Society, vol. 52(5), pages 1271-1289, September.
    9. Perron, Pierre, 1989. "The Calculation of the Limiting Distribution of the Least-Squares Estimator in a Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 5(02), pages 241-255, August.
    10. Hisamatsu, Hiroyuki & Maekawa, Koichi, 1994. "The distribution of the Durbin-Watson statistic in integrated and near-integrated models," Journal of Econometrics, Elsevier, vol. 61(2), pages 367-382, April.
    11. Evans, G B A & Savin, N E, 1981. "Testing for Unit Roots: 1," Econometrica, Econometric Society, vol. 49(3), pages 753-779, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muller, Ulrich K., 2005. "Size and power of tests of stationarity in highly autocorrelated time series," Journal of Econometrics, Elsevier, vol. 128(2), pages 195-213, October.

    More about this item

    Keywords

    Edgeworth exnsion; continuous-time asymotics; stochastic exnsion; distribution function; autoregressive model;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtl:montde:9815. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER). General contact details of provider: http://edirc.repec.org/data/demtlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.