IDEAS home Printed from https://ideas.repec.org/p/mmf/mmfc04/81.html
   My bibliography  Save this paper

Financial Engineering with Reverse Cliquet Options

Author

Listed:
  • Brian A. Eales

    (London Metropolitan University)

  • Radu Tunaru

    (London Metropolitan University)

Abstract

No abstract is available for this item.

Suggested Citation

  • Brian A. Eales & Radu Tunaru, 2004. "Financial Engineering with Reverse Cliquet Options," Money Macro and Finance (MMF) Research Group Conference 2004 81, Money Macro and Finance Research Group.
  • Handle: RePEc:mmf:mmfc04:81
    as

    Download full text from publisher

    File URL: http://repec.org/mmfc04/81.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    2. Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    3. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    4. MacBeth, James D & Merville, Larry J, 1980. "Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    5. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    6. Schmalensee, Richard & Trippi, Robert R, 1978. "Common Stock Volatility Expectations Implied by Option Premia," Journal of Finance, American Finance Association, vol. 33(1), pages 129-147, March.
    7. McConnell, John J & Schwartz, Eduardo S, 1986. "LYON Taming," Journal of Finance, American Finance Association, vol. 41(3), pages 561-576, July.
    8. John J. McConnell & Eduardo S. Schwartz, 1992. "THE ORIGIN OF LYONs: A CASE STUDY IN FINANCIAL INNOVATION," Journal of Applied Corporate Finance, Morgan Stanley, vol. 4(4), pages 40-47, January.
    9. Etheridge,Alison, 2002. "A Course in Financial Calculus," Cambridge Books, Cambridge University Press, number 9780521890779.
    10. Etheridge,Alison, 2002. "A Course in Financial Calculus," Cambridge Books, Cambridge University Press, number 9780521813853.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
    2. Olesia Verchenko, 2011. "Testing option pricing models: complete and incomplete markets," Discussion Papers 38, Kyiv School of Economics.
    3. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007.
    4. Campi, L. & Polbennikov, S.Y. & Sbuelz, A., 2005. "Assessing Credit with Equity : A CEV Model with Jump to Default," Discussion Paper 2005-27, Tilburg University, Center for Economic Research.
    5. Campi, L. & Sbuelz, A., 2005. "Close-Form Pricing of Benchmark Equity Default Swaps Under the CEV Assumption," Discussion Paper 2005-28, Tilburg University, Center for Economic Research.
    6. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    7. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    8. Evangelos Melas, 2018. "Classes of elementary function solutions to the CEV model. I," Papers 1804.07384, arXiv.org.
    9. Luciano Campi & Simon Polbennikov & Sbuelz, 2005. "Assessing Credit with Equity: A CEV Model with Jump to Default," Working Papers 24/2005, University of Verona, Department of Economics.
    10. Hi Jun Choe & Jeong Ho Chu & So Jeong Shin, 2014. "Recombining binomial tree for constant elasticity of variance process," Papers 1410.5955, arXiv.org.
    11. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
    12. DiCesare, Joe & Mcleish, Don, 2008. "Simulation of jump diffusions and the pricing of options," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 316-326, December.
    13. Basu, Parantap & Samanta, Prodyot, 2001. "Volatility and stock prices: implications from a production model of asset pricing," Economics Letters, Elsevier, vol. 70(2), pages 229-235, February.
    14. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    15. Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
    16. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    17. Li, Minqiang, 2010. "A damped diffusion framework for financial modeling and closed-form maximum likelihood estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 132-157, February.
    18. Shane Miller & Eckhard Platen, 2010. "Real-World Pricing for a Modified Constant Elasticity of Variance Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(2), pages 147-175.
    19. Veld, C.H. & Verboven, A.H.F., 1993. "An empirical analysis of warrant prices versus long term call option prices," Research Memorandum FEW 594, Tilburg University, School of Economics and Management.
    20. Tian, Yisong Sam, 1998. "A Trinomial Option Pricing Model Dependent on Skewness and Kurtosis," International Review of Economics & Finance, Elsevier, vol. 7(3), pages 315-330.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mmf:mmfc04:81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.essex.ac.uk/afm/mmf/index.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.