IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p316-326.html
   My bibliography  Save this article

Simulation of jump diffusions and the pricing of options

Author

Listed:
  • DiCesare, Joe
  • Mcleish, Don

Abstract

We present importance sampling and acceptance-rejection simulation methods for one dimensional diffusions. This effectively reduces the computation of many path functionals of general diffusions to a similar computation for the Brownian bridge. We use this approach to efficiently obtain Monte Carlo prices of path-dependent derivative securities such as Barrier and Look-back options for a CEV jump-diffusion model.

Suggested Citation

  • DiCesare, Joe & Mcleish, Don, 2008. "Simulation of jump diffusions and the pricing of options," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 316-326, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:316-326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00080-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. MacBeth, James D & Merville, Larry J, 1980. "Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    2. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    5. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    8. Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
    9. Boyle, Phelim P. & Tian, Yisong “Sam”, 1999. "Pricing Lookback and Barrier Options under the CEV Process," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 241-264, June.
    10. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Metzler Adam & Scott Alexandre, 2014. "Rare event simulation for diffusion processes via two-stage importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 77-100, June.
    2. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    3. Hatem Ben-Ameur & Rim Chérif & Bruno Rémillard, 2016. "American-style options in jump-diffusion models: estimation and evaluation," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1313-1324, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    2. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    3. Evangelos Melas, 2018. "Classes of elementary function solutions to the CEV model. I," Papers 1804.07384, arXiv.org.
    4. Li, Minqiang, 2010. "A damped diffusion framework for financial modeling and closed-form maximum likelihood estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(2), pages 132-157, February.
    5. Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
    6. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    7. Shane Miller & Eckhard Platen, 2010. "Real-World Pricing for a Modified Constant Elasticity of Variance Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(2), pages 147-175.
    8. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    9. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    10. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    11. Xu, Weidong & Wu, Chongfeng & Li, Hongyi, 2011. "Foreign equity option pricing under stochastic volatility model with double jumps," Economic Modelling, Elsevier, vol. 28(4), pages 1857-1863, July.
    12. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    13. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    15. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    16. Diep Duong & Norman R. Swanson, 2011. "Volatility in Discrete and Continuous-Time Models: A Survey with New Evidence on Large and Small Jumps," Advances in Econometrics, in: Missing Data Methods: Time-Series Methods and Applications, pages 179-233, Emerald Group Publishing Limited.
    17. Ciprian Necula, 2008. "Asset Pricing in a Two-Country Discontinuous General Equilibrium Model," Advances in Economic and Financial Research - DOFIN Working Paper Series 24, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    18. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    19. Veld, C.H. & Verboven, A.H.F., 1993. "An empirical analysis of warrant prices versus long term call option prices," Research Memorandum FEW 594, Tilburg University, School of Economics and Management.
    20. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019, January-A.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:316-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.