IDEAS home Printed from https://ideas.repec.org/p/lvl/laeccr/9802.html
   My bibliography  Save this paper

Bayesian Analysis of Road Accidents: A General Framework for the Multinomial Case

Author

Listed:
  • Bolduc, Denis

    ()

  • Bonin, Sylvie

Abstract

The detection of dangerous road sites is usually performed using empirical methods which focus on observed accident frequencies and/or proportions of accidents with a given feature. The most widely used detection tools have an empirical Bayes (EB) background. The EB approaches rely on the comparison of frequencies and/or proportions of accidents at a given site with the amounts that would normally occur at similar sites. Currently, analytical techniques for accident proportions describe the number of accidents with a given feature using a binomial distribution. This paper extends to the multinomial case the general EB technique that we recently suggested to analyze road accident proportions. Our proposed approach is a full-information Bayes method that allows for both deterministic and random heterogeneity as well as spatial-correlation among the sites under investigation. The technique can also be used to analyze accident frequencies. An empirical example based on accident data taken from the Québec city database, will serve to demonstrate its usefulness. Habituellement, la détection des sites d'accidents routiers dangereux est effectuée à partir de méthodes de bayes empiriques appliquées à des taux d'accidents et/ou des proportions d'accidents qui se sont produits dans des conditions données. Ces méthodes comparent les taux et proportions observés avec ceux qui se produisent normalement dans un ensemble de sites routiers considérés comme semblables. Les approches existantes exploitent des lois de distribution binomiales. Dans le présent article, nous décrivons une méthodologie générale à information complète pour analyser le niveau de danger des sites routiers, qui fait appel à des distributions multinomiales. La technique proposée, de type bayésienne, permet de traiter simultanément les problèmes d'hétérogénéité déterministe et aléatoire ainsi que celui de la corrélation spatiale attribuable à la proximité ou l'environnement similaire caractérisant les sites à l'étude. Notre cadre méthodologique englobe des approches bayésiennes de pratique courante qui étudient les proportions d'accidents impliquant une caractéristique donnée. Les propriétés et l'intérêt de la nouvelle méthode sont démontrés à l'aide d'un exemple simple basé sur des données d'accidents de la ville de Québec.

Suggested Citation

  • Bolduc, Denis & Bonin, Sylvie, 1998. "Bayesian Analysis of Road Accidents: A General Framework for the Multinomial Case," Cahiers de recherche 9802, Université Laval - Département d'économique.
  • Handle: RePEc:lvl:laeccr:9802
    as

    Download full text from publisher

    File URL: http://www.ecn.ulaval.ca/w3/recherche/cahiers/1998/9802.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fortin, Bernard & Marceau, Nicolas & Savard, Luc, 1997. "Taxation, wage controls and the informal sector," Journal of Public Economics, Elsevier, vol. 66(2), pages 293-312, November.
    2. Sarte, Pierre-Daniel G., 2000. "Informality and rent-seeking bureaucracies in a model of long-run growth," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 173-197, August.
    3. Saint-Paul, Gilles & Verdier, Thierry, 1993. "Education, democracy and growth," Journal of Development Economics, Elsevier, pages 399-407.
    4. Edward C. Prescott & Stephen L. Parente, 1999. "Monopoly Rights: A Barrier to Riches," American Economic Review, American Economic Association, vol. 89(5), pages 1216-1233, December.
    5. Paul Krugman, 1991. "History versus Expectations," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 651-667.
    6. Matsuyama, Kiminori, 1996. "Why Are There Rich and Poor Countries? Symmetry-Breaking in the World Economy," Journal of the Japanese and International Economies, Elsevier, vol. 10(4), pages 419-439, December.
    7. Murphy, Kevin M & Shleifer, Andrei & Vishny, Robert W, 1989. "Industrialization and the Big Push," Journal of Political Economy, University of Chicago Press, vol. 97(5), pages 1003-1026, October.
    8. Dessy, Sylvain E. & Pallage, Stephane, 2001. "Child labor and coordination failures," Journal of Development Economics, Elsevier, vol. 65(2), pages 469-476, August.
    9. Basu, Kaushik & Van, Pham Hoang, 1998. "The Economics of Child Labor," American Economic Review, American Economic Association, vol. 88(3), pages 412-427, June.
    10. Jane E. Ihrig & Karine S. Moe, 2000. "The dynamics of informal employment," International Finance Discussion Papers 664, Board of Governors of the Federal Reserve System (U.S.).
    11. Katz, Michael L & Shapiro, Carl, 1985. "Network Externalities, Competition, and Compatibility," American Economic Review, American Economic Association, vol. 75(3), pages 424-440, June.
    12. Parente, Stephen L & Prescott, Edward C, 1994. "Barriers to Technology Adoption and Development," Journal of Political Economy, University of Chicago Press, vol. 102(2), pages 298-321, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9802. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuel Paradis). General contact details of provider: http://edirc.repec.org/data/delvlca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.