IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Bayesian Analysis of Road Accidents: A General Framework for Multinominal Case

Listed author(s):
  • Bolduc, D.
  • Bonin, S.

The detection of dangerous road sites is usually performed using empirical methods which focus on observed accident frequencies and/or proportions of accidents with a given feature. The most widely used detection tools have an empirical Bayes (EB) background. The EB approaches rely on the comparison of frequencies and/or proportions of accidents at a given site with the amounts that would normally occur at similar sites. Currently, analytical techniques for accident proportions describe the number of accidents with a given feature using a binomial distribution. This paper extends to the multinomial case the general EB technique that we recently suggested to analyze road accident proportions. Our proposed approach is a full-information Bayes method that allows for both deterministic and random heterogeneity as well as spatial-correlation among the sites under investigation. The technique can also be used to analyze accident frequencies. An empirical example based on accident data taken from the Québec city database, will serve to demonstrate its usefulness.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Laval - Recherche en Politique Economique in its series Papers with number 9802.

in new window

Length: 27 pages
Date of creation: 1998
Handle: RePEc:fth:lavape:9802
Contact details of provider: Postal:

Phone: (418) 656-5122
Fax: (418) 656-2707
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fth:lavape:9802. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.