IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Integral Options in Models with Jumps

  • Pavel V. Gapeev
Registered author(s):

    We present an explicit solution to the formulated in [17] optimal stopping problem for a geometric compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problem to an integro-differential free-boundary problem where the smooth fit may break down and then be replaced by the continuous fit. The result can be interpreted as pricing perpetual integral options in a model with jumps.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2006-068.pdf
    Download Restriction: no

    Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2006-068.

    as
    in new window

    Length: 18 pages
    Date of creation: Sep 2006
    Date of revision:
    Handle: RePEc:hum:wpaper:sfb649dp2006-068
    Contact details of provider: Postal: Spandauer Str. 1,10178 Berlin
    Phone: +49-30-2093-5708
    Fax: +49-30-2093-5617
    Web page: http://sfb649.wiwi.hu-berlin.de
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Gapeev, P.V. & Peskir, G., 2006. "The Wiener disorder problem with finite horizon," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1770-1791, December.
    2. Gapeev Pavel V. & Kühn Christoph, 2005. "Perpetual convertible bonds in jump-diffusion models," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 15-31, January.
    3. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    4. Ernesto Mordecki, 1999. "Optimal stopping for a diffusion with jumps," Finance and Stochastics, Springer, vol. 3(2), pages 227-236.
    5. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2006-068. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.