IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2005-021.html
   My bibliography  Save this paper

Dynamics of State Price Densities

Author

Listed:
  • Wolfgang Härdle
  • Zdenek Hlavka

Abstract

State price densities (SPD) are an important element in applied quantitative finance. In a Black-Scholes model they are lognormal distributions with constant volatility parameter. In practice volatility changes and the distribution deviates from log-normality. We estimate SPDs using EUREX option data on the DAX index via a nonparametric estimator of the second derivative of the (European) call price function. The estimator is constrained so as to satisfy no-arbitrage constraints and it corrects for intraday covariance structure. Given a low dimensional representation of this SPD we study its dynamic for the years 1995–2003. We calculate a prediction corridor for the DAX for a 45 day forecast. The proposed algorithm is simple, it allows calculation of future volatility and can be applied to hedging exotic options.

Suggested Citation

  • Wolfgang Härdle & Zdenek Hlavka, 2005. "Dynamics of State Price Densities," SFB 649 Discussion Papers SFB649DP2005-021, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2005-021
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2005-021.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    2. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    4. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    5. Huynh, Kim & Kervella, Pierre & Zheng, Jun, 2002. "Estimating state-price densities with nonparametric regression," SFB 373 Discussion Papers 2002,40, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    7. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    8. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    9. Jackwerth, Jens Carsten, 1999. "Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review," MPRA Paper 11634, University Library of Munich, Germany.
    10. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans Buehler, 2006. "Expensive martingales," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 207-218.
    2. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.

    More about this item

    Keywords

    option pricing; state price density estimation; nonlinear least squares; confidence intervals;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2005-021. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.