IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Random Sums of Random Variables and Vectors

Listed author(s):
  • Omey, Edward


    (Hogeschool-Universiteit Brussel (HUB), Belgium
    Katholieke Universiteit Leuven, Belgium)

  • Vesilo, R.


    (Macquarie University, Sydney, Australia)

Registered author(s):

    Let fX;Xi; i = 1; 2; :::g denote independent positive random variables having a common distribution function F(x) and, independent of X, let N denote an integer valued random variable. Using S(0) = 0 and S(n) = S(n ?? 1) + Xn, the random sum S(N) has distribution function G(x) = 1Xi=0 P(N = i)P(S(i) _ x) and tail distribution G(x) = 1 ?? G(x). In which case, we say that the distribution function G is subordinated to F with subordinator N. Under suitable conditions, it can be proved that G(x) s E(N)F(x) as x ! 1. In this paper, we extend some of the existing results. In the place of i.i.d. random variables, we use variables that are independent or variables that are asymptotically in- dependent. We also consider multivariate subordinated distribution functions.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Hogeschool-Universiteit Brussel, Faculteit Economie en Management in its series Working Papers with number 2009/09.

    in new window

    Length: 31 pages
    Date of creation: 15 May 2009
    Handle: RePEc:hub:wpecon:200909
    Contact details of provider: Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Cline, Daren B. H. & Resnick, Sidney I., 1992. "Multivariate subexponential distributions," Stochastic Processes and their Applications, Elsevier, vol. 42(1), pages 49-72, August.
    2. Embrechts, Paul & Goldie, Charles M., 1982. "On convolution tails," Stochastic Processes and their Applications, Elsevier, vol. 13(3), pages 263-278, September.
    3. Ali, Mir M. & Mikhail, N. N. & Haq, M. Safiul, 1978. "A class of bivariate distributions including the bivariate logistic," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 405-412, September.
    4. de Haan, L. & Omey, E. & Resnick, S., 1984. "Domains of attraction and regular variation in IRd," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 17-33, February.
    5. Omey, E. & Willekens, E., 1986. "Second order behaviour of the tail of a subordinated probability distribution," Stochastic Processes and their Applications, Elsevier, vol. 21(2), pages 339-353, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:hub:wpecon:200909. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sabine Janssens)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.