IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Asymptotic distributions of the overshoot and undershoots for the Lévy insurance risk process in the Cramér and convolution equivalent cases

  • Griffin, Philip S.
  • Maller, Ross A.
  • Schaik, Kees van
Registered author(s):

    Recent models of the insurance risk process use a Lévy process to generalise the traditional Cramér–Lundberg compound Poisson model. This paper is concerned with the behaviour of the distributions of the overshoot and undershoots of a high level, for a Lévy process which drifts to −∞ and satisfies a Cramér or a convolution equivalent condition. We derive these asymptotics under minimal conditions in the Cramér case, and compare them with known results for the convolution equivalent case, drawing attention to the striking and unexpected fact that they become identical when certain parameters tend to equality. Thus, at least regarding these quantities, the “medium-heavy” tailed convolution equivalent model segues into the “light-tailed” Cramér model in a natural way. This suggests a usefully expanded flexibility for modelling the insurance risk process. We illustrate this relationship by comparing the asymptotic distributions obtained for the overshoot and undershoots, assuming the Lévy process belongs to the “GTSC” class.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000728
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 51 (2012)
    Issue (Month): 2 ()
    Pages: 382-392

    as
    in new window

    Handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:382-392
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Embrechts, Paul & Goldie, Charles M., 1982. "On convolution tails," Stochastic Processes and their Applications, Elsevier, vol. 13(3), pages 263-278, September.
    2. Schmidli, H., 1995. "Cramer-Lundberg approximations for ruin probabilities of risk processes perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 135-149, May.
    3. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    4. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    5. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    6. Bertoin, J. & Doney, R. A., 1994. "Cramer's estimate for Lévy processes," Statistics & Probability Letters, Elsevier, vol. 21(5), pages 363-365, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:382-392. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.