IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03207061.html
   My bibliography  Save this paper

Asymptotic analysis of different covariance matrices estimation for minimum variance portfolio

Author

Listed:
  • Linda Chamakh

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique, Global Markets Quantitative Research - BNP Paribas)

  • Emmanuel Gobet

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Jean-Philippe Lemor

    (Global Markets Quantitative Research - BNP Paribas)

Abstract

In dynamic minimum variance portfolio, we study the impact of the sequence of covariance matrices taken in inputs, on the realized variance of the portfolio computed along a sample market path. The allocation of the portfolio is adjusted on a regular basis (every H days) using an updated covariance matrix estimator. In a modelling framework where the covariance matrix of the asset returns evolves as an ergodic process, we quantify the probability of observing an underperformance of the optimal dynamic covariance matrix compared to any other choice. The bounds depend on the tails of the returns, on the adjustment period H, and on the total number of rebalancing times N. These results provide asset managers with new insights into the optimality of their choice of covariance matrix estimators, depending on the depth of the backtest N H and the investment period H. Experiments based on GARCH modelling support our theoretical results.

Suggested Citation

  • Linda Chamakh & Emmanuel Gobet & Jean-Philippe Lemor, 2021. "Asymptotic analysis of different covariance matrices estimation for minimum variance portfolio," Working Papers hal-03207061, HAL.
  • Handle: RePEc:hal:wpaper:hal-03207061
    Note: View the original document on HAL open archive server: https://hal.science/hal-03207061
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03207061/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2018. "Markov switching GARCH models for Bayesian hedging on energy futures markets," Energy Economics, Elsevier, vol. 70(C), pages 545-562.
    2. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    3. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    4. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    5. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    6. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    7. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    8. Yan, Lei & Garcia, Philip, 2017. "Portfolio investment: Are commodities useful?," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 43-55.
    9. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    10. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    11. Jiang, Julia & Liu, Jun & Tian, Weidong & Zeng, Xudong, 2022. "Portfolio concentration, portfolio inertia, and ambiguous correlation," Journal of Economic Theory, Elsevier, vol. 203(C).
    12. Dirk Paulsen & Jakob Sohl, 2016. "Noise Fit, Estimation Error and a Sharpe Information Criterion," Papers 1602.06186, arXiv.org, revised Dec 2019.
    13. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    14. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2021. "Bayesian mean–variance analysis: optimal portfolio selection under parameter uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(2), pages 221-242, February.
    15. Kourtis, Apostolos, 2014. "On the distribution and estimation of trading costs," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 104-117.
    16. Maller, Ross & Roberts, Steven & Tourky, Rabee, 2016. "The large-sample distribution of the maximum Sharpe ratio with and without short sales," Journal of Econometrics, Elsevier, vol. 194(1), pages 138-152.
    17. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    18. Hongseon Kim & Soonbong Lee & Seung Bum Soh & Seongmoon Kim, 2022. "Improving portfolio investment performance with distance‐based portfolio‐combining algorithms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(4), pages 941-959, December.
    19. Katrin Schöttle & Ralf Werner & Rudi Zagst, 2010. "Comparison and robustification of Bayes and Black-Litterman models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 453-475, June.
    20. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03207061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.