Explicit diversification benefit for dependent risks
Author
Abstract
Suggested Citation
Note: View the original document on HAL open archive server: https://essec.hal.science/hal-01256869
Download full text from publisher
Other versions of this item:
- Dacorogna, Michel & Elbahtouri, Laila & Kratz, Marie, 2015. "Explicit diversifiction benefit for dependent risks," ESSEC Working Papers WP1522, ESSEC Research Center, ESSEC Business School.
References listed on IDEAS
- Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011.
"Explicit ruin formulas for models with dependence among risks,"
Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
- Hansjoerg Albrecher & Corina Constantinescu & Stéphane Loisel, 2011. "Explicit ruin formulas for models with dependence among risks," Post-Print hal-00540621, HAL.
- Groenendijk, Patrick A. & Lucas, André & Vries, Casper G. de, 1997. "Stochastic processes, non-normal innovations, and the use of scaling ratios," Serie Research Memoranda 0058, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
- Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
- Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
- Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
- Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
- Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
- Xie, Jiehua & Lin, Feng & Yang, Jingping, 2017. "On a generalization of Archimedean copula family," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 121-129.
- Youri Raaijmakers & Hansjörg Albrecher & Onno Boxma, 2019. "The Single Server Queue with Mixing Dependencies," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1023-1044, December.
- Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
- Lazarova, M.D. & Minkova, L.D., 2017. "I-Delaporte process and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 135-141.
- Moshe Kelner & Zinoviy Landsman & Udi E. Makov, 2021. "Compound Archimedean Copulas," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 126-126, June.
- Marri, Fouad & Furman, Edward, 2012. "Pricing compound Poisson processes with the Farlie–Gumbel–Morgenstern dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 151-157.
- Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024.
"Robust distortion risk measures,"
Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
- Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2022. "Robust Distortion Risk Measures," Papers 2205.08850, arXiv.org, revised Mar 2023.
- Dutang, C. & Lefèvre, C. & Loisel, S., 2013.
"On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing,"
Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
- Christophe Dutang & C. Lefevre & S. Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-01616175, HAL.
- Christophe Dutang & Claude Lefèvre & Stéphane Loisel, 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Post-Print hal-00746251, HAL.
- Caroline Hillairet & Ying Jiao & Anthony Réveillac, 2018. "Pricing formulae for derivatives in insurance using the Malliavin calculus ," Post-Print hal-01561987, HAL.
- Enkelejd Hashorva & Lanpeng Ji, 2014. "Random Shifting and Scaling of Insurance Risks," Risks, MDPI, vol. 2(3), pages 1-12, July.
- Patrick A. Groenendijk & André Lucas & Casper G. de Vries, 1998. "A Hybrid Joint Moment Ratio Test for Financial Time Series," Tinbergen Institute Discussion Papers 98-104/2, Tinbergen Institute.
- Franc{c}ois Dufresne & Enkelejd Hashorva & Gildas Ratovomirija & Youssouf Toukourou, 2016. "On bivariate lifetime modelling in life insurance applications," Papers 1601.04351, arXiv.org.
- Stéphane Loisel & Hans-U. Gerber, 2012. "Why ruin theory should be of interest for insurance practitioners and risk managers nowadays," Post-Print hal-00746231, HAL.
- Sharifah Farah Syed Yusoff Alhabshi & Zamira Hasanah Zamzuri & Siti Norafidah Mohd Ramli, 2021. "Monte Carlo Simulation of the Moments of a Copula-Dependent Risk Process with Weibull Interwaiting Time," Risks, MDPI, vol. 9(6), pages 1-21, June.
More about this item
Keywords
Aggregation of risks; Archimedean copula; Clayton; Diversification (benefit); Gaussian; Gumbel; Heavy tail; Mixing technique; Pareto; Risk measure; TVaR; VaR; Weibull;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BAN-2016-03-06 (Banking)
- NEP-RMG-2016-03-06 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01256869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.