IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00546145.html
   My bibliography  Save this paper

Optimal trading algorithms and selfsimilar processes: a p-variation approach

Author

Listed:
  • Mauricio Labadie

    () (CAMS - Centre d'analyse et de mathématique sociale - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique)

  • Charles-Albert Lehalle

    () (Head of Quantitative Research - CALYON group)

Abstract

Almgren and Chriss ("Optimal execution of portfolio transactions", Journal of Risk, Vol. 3, No. 2, 2010, pp. 5-39) and Lehalle ("Rigorous strategic trading: balanced portfolio and mean reversion", Journal of Trading, Summer 2009, pp. 40-46.) developed optimal trading algorithms for assets and portfolios driven by a brownian motion. More recently, Gatheral and Schied ("Optimal trade execution under geometric brownian motion in the Almgren and Chriss framework", Working paper SSRN, August 2010) addressed the same problem for the geometric brownian motion. In this article we extend these ideas for assets and portfolios driven by a discrete version of a selfsimilar process of exponent H in (0,1), which can be either a fractional brownian motion of Hurst exponent H or a truncated Lévy distribution of index 1/H. The cost functional we use is not the classical expectation-variance one: instead of the variance, we use the p-variation, i.e. the Lp equivalent of the variance. We find explicitly the trading algorithm for any p>1 and compare the resulting trading curve (that we call p-curve) with the classical expectation-variance curve (the 2-curve). If p2 then the p-curve is above the 2-curve at the beginning of the execution and below at the end. Therefore, this pattern minimizes the market impact. We also show that the value of p in the p-variation is related to the exponent H of selfsimilarity via p=1/H. In consequence, one can find the right value of p to put into the trading algorithm by calibrating the exponent H via real time series. We believe this result is interesting applications for high-frecuency trading.

Suggested Citation

  • Mauricio Labadie & Charles-Albert Lehalle, 2010. "Optimal trading algorithms and selfsimilar processes: a p-variation approach," Working Papers hal-00546145, HAL.
  • Handle: RePEc:hal:wpaper:hal-00546145
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00546145
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00546145/document
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00546145. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.