IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00674426.html

On the Number of Blocks Required to Access the Core

Author

Listed:
  • Sylvain Béal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique, CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Éric Rémila

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique, LIP - Laboratoire de l'Informatique du Parallélisme - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - Inria - Institut National de Recherche en Informatique et en Automatique - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

For any transferable utility game in coalitional form with nonempty core, we show that the number of blocks required to switch from an imputation out of the core to a core imputation is less than or equal to n(n−1)/2, where n is the number of players. This number considerably improves the bounds found by Kóczy (2006) [5] and Yang (2010) [11]. Our result relies on an altered version of the procedure proposed by Sengupta and Sengupta (1996) [9]. The use of the Davis-Maschler reduced-games is also pointed out.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sylvain Béal & Éric Rémila & Philippe Solal, 2011. "On the Number of Blocks Required to Access the Core," Post-Print halshs-00674426, HAL.
  • Handle: RePEc:hal:journl:halshs-00674426
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yi-You, 2012. "On the accessibility of core-extensions," Games and Economic Behavior, Elsevier, vol. 74(2), pages 687-698.
    2. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    3. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2013. "An optimal bound to access the core in TU-games," Games and Economic Behavior, Elsevier, vol. 80(C), pages 1-9.
    4. Péter Szikora, 2013. "Introduction into the literature of cooperative game theory with special emphasis on dynamic games and the core," Proceedings- 11th International Conference on Mangement, Enterprise and Benchmarking (MEB 2013),, Óbuda University, Keleti Faculty of Business and Management.
    5. Gedai, Endre & Kóczy, László Á. & Zombori, Zita, 2012. "Cluster games: A novel, game theory-based approach to better understand incentives and stability in clusters," MPRA Paper 65095, University Library of Munich, Germany.
    6. Sylvain Béal & Eric Rémila & Philippe Solal, 2013. "Accessibility and stability of the coalition structure core," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 187-202, October.
    7. Yang, Yi-You, 2011. "Accessible outcomes versus absorbing outcomes," Mathematical Social Sciences, Elsevier, vol. 62(1), pages 65-70, July.
    8. Bando, Keisuke & Kawasaki, Ryo, 2021. "Stability properties of the core in a generalized assignment problem," Games and Economic Behavior, Elsevier, vol. 130(C), pages 211-223.
    9. Péter Biró & Gethin Norman, 2013. "Analysis of stochastic matching markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 1021-1040, November.
    10. Herings, P. Jean-Jacques & Kóczy, László Á., 2021. "The equivalence of the minimal dominant set and the myopic stable set for coalition function form games," Games and Economic Behavior, Elsevier, vol. 127(C), pages 67-79.
    11. Yi-You Yang, 2020. "On the characterizations of viable proposals," Theory and Decision, Springer, vol. 89(4), pages 453-469, November.
    12. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2011. "On the number of blocks required to access the coalition structure core," MPRA Paper 29755, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00674426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.