IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-05094029.html
   My bibliography  Save this paper

Forecasting the Moroccan Stock Market: A Theoretical Approach Integrating Macroeconomic and Sentiment Data through Deep Learning

Author

Listed:
  • Imad Talhartit

    (Université Hassan 1er [Settat], Ecole Nationale de Commerce et Gestion - Settat, Laboratory of Finance, Audit and Organizational Governance Research)

  • Sanae Ait Jillali

    (Université Hassan 1er [Settat], Ecole Nationale de Commerce et Gestion - Settat, Laboratory of Finance, Audit and Organizational Governance Research)

  • Mounime El Kabbouri

    (Université Hassan 1er [Settat], Ecole Nationale de Commerce et Gestion - Settat, Laboratory of Finance, Audit and Organizational Governance Research)

Abstract

In today's data-driven economy, predicting stock market behavior has become a key focus for both finance professionals and academics. Traditionally reliant on historical and economic data, stock price forecasting is now being enhanced by AI technologies, especially Deep Learning and Natural Language Processing (NLP), which allow the integration of qualitative data like news sentiment and investor opinions. Deep Learning uses multi-layered neural networks to analyze complex patterns, while NLP enables machines to interpret human language, making it useful for extracting sentiment from media sources. Though most research has focused on developed markets, emerging economies like Morocco offer a unique context due to their evolving financial systems and data limitations. This study takes a theoretical and exploratory approach, aiming to conceptually examine how macroeconomic indicators and sentiment analysis can be integrated using deep learning models to enhance stock price prediction in Morocco. Rather than building a model, the paper reviews literature, evaluates data sources, and identifies key challenges and opportunities. Ultimately, the study aims to bridge AI techniques with financial theory in an emerging market setting, providing a foundation for future empirical research and interdisciplinary collaboration.

Suggested Citation

  • Imad Talhartit & Sanae Ait Jillali & Mounime El Kabbouri, 2025. "Forecasting the Moroccan Stock Market: A Theoretical Approach Integrating Macroeconomic and Sentiment Data through Deep Learning," Post-Print hal-05094029, HAL.
  • Handle: RePEc:hal:journl:hal-05094029
    DOI: 10.5281/zenodo.15576354
    Note: View the original document on HAL open archive server: https://hal.science/hal-05094029v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-05094029v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.5281/zenodo.15576354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Javid Iqbal & Muhammad Khalid Sohail & Muhammad Kamran Malik, 2023. "Predicting the future financial performance of Islamic banks: a sentiment analysis approach," International Journal of Islamic and Middle Eastern Finance and Management, Emerald Group Publishing Limited, vol. 16(6), pages 1287-1305, September.
    2. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    3. Jaydip Sen & Abhishek Dutta & Sidra Mehtab, 2021. "Profitability Analysis in Stock Investment Using an LSTM-Based Deep Learning Model," Papers 2104.06259, arXiv.org.
    4. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    5. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
    6. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    7. Th'arsis Tuani Pinto Souza & Olga Kolchyna & Philip C. Treleaven & Tomaso Aste, 2015. "Twitter Sentiment Analysis Applied to Finance: A Case Study in the Retail Industry," Papers 1507.00784, arXiv.org, revised Jul 2015.
    8. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    9. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    10. Abdelhadi Alimoussa & Hicham Assalih, 2023. "The répercussion of macroeconomic factors on the performance of the Moroccan stock market: Econometric Study using the VAR Model [La répercussion des facteurs macroéconomiques sur la performance ma," Post-Print hal-04192393, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Huan Huu & Ngo, Vu Minh & Pham, Luan Minh & Van Nguyen, Phuc, 2025. "Investor sentiment and market returns: A multi-horizon analysis," Research in International Business and Finance, Elsevier, vol. 74(C).
    2. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    3. Domonkos F. Vamossy, 2020. "Investor Emotions and Earnings Announcements," Papers 2006.13934, arXiv.org, revised Jun 2020.
    4. Sun, Andrew & Lachanski, Michael & Fabozzi, Frank J., 2016. "Trade the tweet: Social media text mining and sparse matrix factorization for stock market prediction," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 272-281.
    5. An, Suwei, 2023. "Essays on incentive contracts, M&As, and firm risk," Other publications TiSEM dd97d2f5-1c9d-47c5-ba62-f, Tilburg University, School of Economics and Management.
    6. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    7. Baker, Malcolm & Wurgler, Jeffrey & Yuan, Yu, 2012. "Global, local, and contagious investor sentiment," Journal of Financial Economics, Elsevier, vol. 104(2), pages 272-287.
    8. João M. Sousa & Ricardo M. Sousa, 2019. "Asset Returns Under Model Uncertainty: Evidence from the Euro Area, the US and the UK," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 139-176, June.
    9. Alberto Barroso del Toro & Laura Vivas Crisol & Xavier Tort-Martorell, 2022. "Comparing the Impacts of Sustainability Narratives on American and European Energy Shareholders: A Multi-Event Study Analysing Reactions to News before and during COVID-19," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    10. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    11. Hollstein, Fabian & Prokopczuk, Marcel & Tharann, Björn & Wese Simen, Chardin, 2025. "Predicting the equity premium around the globe: Comprehensive evidence from a large sample," International Journal of Forecasting, Elsevier, vol. 41(1), pages 208-228.
    12. Chi, Yeguang & El-Jahel, Lina & Vu, Thanh, 2024. "Novel and old news sentiment in commodity futures markets," Energy Economics, Elsevier, vol. 140(C).
    13. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    14. Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    15. Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2016. "Forecasting stock market returns over multiple time horizons," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1695-1712, November.
    16. Dou, Winston Wei & Ji, Yan & Wu, Wei, 2021. "Competition, profitability, and discount rates," Journal of Financial Economics, Elsevier, vol. 140(2), pages 582-620.
    17. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Ine!ciencies: Evidence from Twitter and Betfair," Working Papers 2016-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    18. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    19. Wonseong Kim & Choong Lyol Lee, 2024. "Bounded Rationality in Central Bank Communication," Papers 2411.04286, arXiv.org.
    20. Hwang, Soosung & Salmon, Mark, 2004. "Market stress and herding," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 585-616, September.

    More about this item

    Keywords

    Stock Price Prediction; Deep Learning; Natural Language Processing (NLP); Sentiment Analysis; Macroeconomic Indicators; Emerging Markets; Moroccan Financial Market;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-05094029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.