IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04325627.html
   My bibliography  Save this paper

Equivalent Risk Indicators : VaR, TCE, and Beyond

Author

Listed:
  • Silvia Faroni
  • Olivier Le Courtois

    (EM - EMLyon Business School)

  • Krzysztof Ostaszewski

Abstract

While a lot of research concentrates on the respective merits of VaR and TCE, which are the two most classic risk indicators used by financial institutions, little has been written on the equivalence between such indicators. Further, TCE, despite its merits, may not be the most accurate indicator to take into account the nature of probability distribution tails. In this paper, we introduce a new risk indicator that extends TCE to take into account higher-order risks. We compare the quantiles of this indicator to the quantiles of VaR in a simple Pareto framework, and then in a generalized Pareto framework. We also examine equivalence results between the quantiles of high-order TCEs.

Suggested Citation

  • Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators : VaR, TCE, and Beyond," Post-Print hal-04325627, HAL.
  • Handle: RePEc:hal:journl:hal-04325627
    Note: View the original document on HAL open archive server: https://hal.science/hal-04325627v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04325627v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. PAVLO A. Krokhmal, 2007. "Higher moment coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 373-387.
    2. Olivier Courtois, 2018. "Some Further Results on the Tempered Multistable Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(2), pages 87-109, June.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    5. Thomas J. Linsmeier & Neil D. Pearson, 2000. "Value at Risk," Financial Analysts Journal, Taylor & Francis Journals, vol. 56(2), pages 47-67, March.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    2. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    3. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    4. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    5. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    6. Sant’Anna, Leonardo Riegel & Righi, Marcelo Brutti & Müller, Fernanda Maria & Guedes, Pablo Cristini, 2022. "Risk measure index tracking model," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 361-383.
    7. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3.
    8. Burzoni, Matteo & Munari, Cosimo & Wang, Ruodu, 2022. "Adjusted Expected Shortfall," Journal of Banking & Finance, Elsevier, vol. 134(C).
    9. Carole Bernard & Jinghui Chen & Steven Vanduffel, 2025. "Higher moments under dependence uncertainty with applications in insurance," Papers 2508.16600, arXiv.org.
    10. Zhiping Chen & Qianhui Hu & Ruiyue Lin, 2016. "Performance ratio-based coherent risk measure and its application," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 681-693, May.
    11. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    12. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Mathematics and Financial Economics, Springer, volume 17, number 3.
    13. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    14. Yan Fang & Jian Li & Yinglin Liu & Yunfan Zhao, 2023. "Semiparametric estimation of expected shortfall and its application in finance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 835-851, July.
    15. Jinghui Chen & Edward Furman & X. Sheldon Lin, 2025. "Marginal expected shortfall: Systemic risk measurement under dependence uncertainty," Papers 2504.19953, arXiv.org.
    16. Abbas, Yasser & Daouia, Abdelaati & Nemouchi, Boutheina & Stupfler, Gilles, 2025. "Tail expectile-VaR estimation in the semiparametric Generalized Pareto model," TSE Working Papers 25-1607, Toulouse School of Economics (TSE).
    17. Matmoura, Yassine & Penev, Spiridon, 2013. "Multistage optimization of option portfolio using higher order coherent risk measures," European Journal of Operational Research, Elsevier, vol. 227(1), pages 190-198.
    18. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2010. "Kusuoka representation of higher order dual risk measures," Annals of Operations Research, Springer, vol. 181(1), pages 325-335, December.
    19. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    20. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04325627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.