IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04112627.html
   My bibliography  Save this paper

Integrated Laycan and Berth Allocation Problem with ship stability and conveyor routing constraints in bulk ports

Author

Listed:
  • Hamza Bouzekri

    (G-SCOP_DOME2S - Design, Engineering and Operation Management of Systems and Services - G-SCOP - Laboratoire des sciences pour la conception, l'optimisation et la production - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes)

  • Gülgün Alpan

    (G-SCOP_DOME2S - Design, Engineering and Operation Management of Systems and Services - G-SCOP - Laboratoire des sciences pour la conception, l'optimisation et la production - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes)

  • Vincent Giard

    (LAMSADE - Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper, we study the integrated Laycan and Berth Allocation Problem (LBAP) in the context of bulk ports, which considers two problems in an integrated way: the tactical Laycan Allocation Problem and the dynamic hybrid case of the operational Berth Allocation Problem. To make the LBAP closer to reality, we consider tidal bulk ports with conveyor routing constraints between storage hangars and berthing positions, preventive maintenance activities, multiple quays with different water depths and fixed heterogeneous bulk-handling cranes, navigation channel restrictions, vessels with multiple cargo types, charter party clauses, non-working periods, and ship stability considerations during loading operations. The proposed integer programming model aims to define an efficient schedule for berthing chartered vessels and new vessels to charter. The model is formulated with predicates that guarantee maximum flexibility in the implementation and greatly improve the computational performance. Finally, the model is tested and validated through a set of relevant case studies inspired by the operations of OCP Group at the bulk port of Jorf Lasfar in Morocco in very reasonable computational time using commercial Software.

Suggested Citation

  • Hamza Bouzekri & Gülgün Alpan & Vincent Giard, 2023. "Integrated Laycan and Berth Allocation Problem with ship stability and conveyor routing constraints in bulk ports," Post-Print hal-04112627, HAL.
  • Handle: RePEc:hal:journl:hal-04112627
    DOI: 10.1016/j.cie.2023.109341
    Note: View the original document on HAL open archive server: https://hal.science/hal-04112627v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04112627v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.cie.2023.109341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.
    2. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    3. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    4. Robenek, Tomáš & Umang, Nitish & Bierlaire, Michel & Ropke, Stefan, 2014. "A branch-and-price algorithm to solve the integrated berth allocation and yard assignment problem in bulk ports," European Journal of Operational Research, Elsevier, vol. 235(2), pages 399-411.
    5. Hamza Bouzekri & Gülgün Alpan & Vincent Giard, 2021. "Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem in tidal ports with multiple quays," Post-Print hal-03107972, HAL.
    6. Hamza Bouzekri & Gülgün Alpan & Vincent Giard, 2021. "Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem in tidal ports with multiple quays," Post-Print hal-02480102, HAL.
    7. Bouzekri, Hamza & Alpan, Gülgün & Giard, Vincent, 2021. "Integrated Laycan and Berth Allocation and time-invariant Quay Crane Assignment Problem in tidal ports with multiple quays," European Journal of Operational Research, Elsevier, vol. 293(3), pages 892-909.
    8. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    9. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Zhendi & Ji, Mingjun & Kong, Lingrui & Hou, Xinhao, 2024. "Scheduling of automated ore terminal operations based on fixed inflow rhythm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    2. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Lu Zhen & Haolin Li & Liyang Xiao & Dayu Lin & Shuaian Wang, 2024. "Mathematical Programming-Driven Daily Berth Planning in Xiamen Port," Interfaces, INFORMS, vol. 54(4), pages 329-356, July.
    4. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    5. Guo, Liming & Zheng, Jianfeng & Liang, Jinpeng & Wang, Shuaian, 2023. "Column generation for the multi-port berth allocation problem with port cooperation stability," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 3-28.
    6. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Hamza Bouzekri & Gülgün Alpan & Vincent Giard, 2022. "Integrated Laycan and Berth Allocation Problem with ship stability and conveyor routing constraints in bulk ports," Working Papers hal-03431793, HAL.
    8. Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
    9. Guo, Liming & Zheng, Jianfeng & Du, Jian & Gao, Ziyou & Fagerholt, Kjetil, 2024. "Integrated planning of berth allocation, quay crane assignment and yard assignment in multiple cooperative terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    10. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2023. "A branch-and-price heuristic algorithm for the bunkering operation problem of a liquefied natural gas bunkering station in the inland waterways," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 145-170.
    11. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    12. Hao, Luyao & Jin, Jian Gang & Zhao, Ke, 2023. "Joint scheduling of barges and tugboats for river–sea intermodal transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    13. Haoqi Xie & Daniela Ambrosino, 2025. "Operations Research, Machine Learning, and Integrated Techniques for Decision Problems in the Seaside Area of Container Terminals," SN Operations Research Forum, Springer, vol. 6(2), pages 1-51, June.
    14. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    15. Wu, Lingxiao & Jia, Shuai & Wang, Shuaian, 2020. "Pilotage planning in seaports," European Journal of Operational Research, Elsevier, vol. 287(1), pages 90-105.
    16. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong & Sheng, Dian, 2021. "Short-term berth planning and ship scheduling for a busy seaport with channel restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    17. Liu, Baoli & Wang, Xincheng & Wang, Zehao & Zheng, Jianfeng & Sheng, Dian, 2025. "Modeling and solving the joint berth allocation and vessel sequencing problem with speed optimization in a busy seaport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    18. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    19. Meixian Jiang & Jiajia Feng & Jian Zhou & Lin Zhou & Fangzheng Ma & Guanghua Wu & Yuqiu Zhang, 2023. "Multi-Terminal Berth and Quay Crane Joint Scheduling in Container Ports Considering Carbon Cost," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    20. Paul Corry & Christian Bierwirth, 2019. "The Berth Allocation Problem with Channel Restrictions," Transportation Science, INFORMS, vol. 53(3), pages 708-727, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04112627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.