IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03176598.html
   My bibliography  Save this paper

Microplastic pollution in agricultural soils and abatement measures – a model-based assessment for Germany

Author

Listed:
  • Martin Henseler

    (EDEHN - Equipe d'Economie Le Havre Normandie - ULH - Université Le Havre Normandie - NU - Normandie Université)

  • Micheal Bernard Gallagher

    (Quimper, France)

  • Peter Kreins

    (Thünen Institute of Rural Studies)

Abstract

Microplastic pollution in soils is a recent environmental problem and the lack of knowledge about the impacts and the extent of the problem are raising questions and concerns among researchers and politicians. Using a normative simulation model, we assess the extent of microplastic pollution in German agricultural soils originat-ing from the land application of sewage sludge and compost. We estimate the microplastic concentration in German agricultural soils, the area of polluted land, and we compare the efficiency and effectiveness of some selected abatement measures. For 2020, we estimate that microplastic concentration in agricultural soil reaches a maximum concentration of between 30 and 50 mg/kg dry weight on 2% of Utilised Agricultural Area and a marginal concentration on 22% of Utilised Agricultural Area. Without the implementation of abatement measures, we expect the microplastic concentration to increase two to three times by 2060. Assessing the abatement measures, we find that for sewage sludge, thermal recycling is a more efficient and effective than equipping washing machines with microplastic-filters in private households. The use of plastic detection systems in the biowaste collection process reduces the plastic content of the compost and thus the release of micro-plastic into the soil. Detection systems are a more efficient measure for compost than thermal recycling. Con-cerning sludge, the findings indicate that the German strategy of thermally recycling sewage sludge is an effi-cient and effective measure to reduce microplastic pollution in soils. Reducing the plastic content of collected biowaste complies with the principles a circular economy.

Suggested Citation

  • Martin Henseler & Micheal Bernard Gallagher & Peter Kreins, 2022. "Microplastic pollution in agricultural soils and abatement measures – a model-based assessment for Germany," Post-Print hal-03176598, HAL.
  • Handle: RePEc:hal:journl:hal-03176598
    DOI: 10.1007/s10666-022-09826-5
    Note: View the original document on HAL open archive server: https://hal.science/hal-03176598v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03176598v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10666-022-09826-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brodhagen, Marion & Goldberger, Jessica R. & Hayes, Douglas G. & Inglis, Debra Ann & Marsh, Thomas L. & Miles, Carol, 2017. "Policy considerations for limiting unintended residual plastic in agricultural soils," Environmental Science & Policy, Elsevier, vol. 69(C), pages 81-84.
    2. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Makriyannis, 2023. "How the Biophysical Paradigm Impedes the Scientific Advancement of Ecological Economics: A Transdisciplinary Analysis," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    2. Salvador Peniche Camps & Charles A. S. Hall & Kent Klitgaard, 2020. "Biophysical Economics for Policy and Teaching: Mexico as an Example," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    3. Gołębiewska, Barbara & Grontkowska, Anna & Gębska, Monika, 2020. "Education As The Differentiating Factor In Applying Sustainable Development Principles On Farms," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2020(3).
    4. Lundgren, Jakob, 2022. "Unity through disunity: Strengths, values, and tensions in the disciplinary discourse of ecological economics," Ecological Economics, Elsevier, vol. 191(C).
    5. Kaitlin Kish, 2020. "Paying Attention: Big Data and Social Advertising as Barriers to Ecological Change," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    6. Shengnan Huang & Ehsan Elahi, 2022. "Farmers’ Preferences for Recycling Pesticide Packaging Waste: An Implication of a Discrete Choice Experiment Method," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    7. Zhao, Zhiyuan & Zheng, Wei & Ma, Yanting & Wang, Xianling & Li, Ziyan & Zhai, Bingnian & Wang, Zhaohui, 2020. "Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Liu, Zihan & Cai, Lu & Dong, Qinge & Zhao, Xiaoli & Han, Jianqiao, 2022. "Effects of microplastics on water infiltration in agricultural soil on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    10. Luciano Celi, 2021. "Deriving EROI for Thirty Large Oil Companies Using the CO2 Proxy from 1999 to 2018," Biophysical Economics and Resource Quality, Springer, vol. 6(4), pages 1-12, December.
    11. Ji Chen & Xiao Chen & Jin Guo & Runyun Zhu & Mengran Liu & Xixi Kuang & Wenqing He & Yao Lu, 2021. "Agricultural, Ecological, and Social Insights: Residual Mulch Film Management Capacity and Policy Recommendations Based on Evidence in Yunnan Province, China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    12. Dube, Benjamin, 2021. "Why cross and mix disciplines and methodologies?: Multiple meanings of Interdisciplinarity and pluralism in ecological economics," Ecological Economics, Elsevier, vol. 179(C).
    13. Jessica R. Goldberger, 2018. "2018 AFHVS presidential address," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 35(4), pages 899-904, December.
    14. Yuan Gao & Li Tian & An Huang & Huan Zhang & Jianghao Yu & Yu Pan & Yuankang Wang & Binzhuo Gou, 2023. "Research on the Sustainable Development of Natural-Social-Economic Systems Based on the Emergy Accounting Method—A Case Study of Liyang in China," Land, MDPI, vol. 12(7), pages 1-20, July.
    15. Xiangsheng Dou, 2022. "Agro-ecological sustainability evaluation in China," Journal of Bioeconomics, Springer, vol. 24(3), pages 223-239, October.
    16. Elen Presotto & Gabrielli Martinelli & Gabriela Allegretti & Edson Talamini, 2021. "Energy Efficiency, Monetary Costs, and Sustainability of Brazilian Rainfed and Irrigated Rice Cropping Systems," Biophysical Economics and Resource Quality, Springer, vol. 6(3), pages 1-14, September.
    17. Brenda Madrid & Huan Zhang & Carol A. Miles & Michael Kraft & Deirdre Griffin-LaHue & Lisa Wasko DeVetter, 2022. "Humic and Acetic Acids Have the Potential to Enhance Deterioration of Select Plastic Soil-Biodegradable Mulches in a Mediterranean Climate," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
    18. Jaime Villena & Marta M. Moreno & Sara González-Mora & Jesús A. López-Perales & Pablo A. Morales-Rodríguez & Carmen Moreno, 2022. "Degradation Pattern of Five Biodegradable, Potentially Low-Environmental-Impact Mulches under Laboratory Conditions," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    19. Deepak Agrawal & Armin Bashashati, 2024. "Hospitals Should Offer Straws Only on Demand to the Public and Patients—An Environmental and Patient Care Imperative," IJERPH, MDPI, vol. 21(2), pages 1-8, January.
    20. Yuxin Deng & Zijie Zeng & Weiying Feng & Jing Liu & Fang Yang, 2024. "Characteristics and Migration Dynamics of Microplastics in Agricultural Soils," Agriculture, MDPI, vol. 14(1), pages 1-16, January.

    More about this item

    Keywords

    Sewage sludge; Fertiliser; Recycling; Efficiency; Mitigation cost; Compost;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03176598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.