IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00779045.html

Modelling social learning in an Agent-Based new keynesian macroeconomic model

Author

Listed:
  • Isabelle Salle

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Murat Yildizoglu

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Martin Zumpe

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Marc-Alexandre Sénégas

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

Abstract

We propose an agent-based macroeconomic model (ABM) inspired by the New Keynesian general equilibrium model (NKM, Woodford 2003). We analyse the aggregate economic dynamics resulting from social learning of agents (households and firms). Households’ labour supply and consumption demand, as well as firms\' labour demand and wage offers evolve through imitation and random experimenting by the agents. We study, in this setting, the aggregate properties of the economy and the ability of those learning agents to coordinate on the intra-temporal equilibrium of the original model. Our approach is quite different from the existing learning literature in the NKM (à la Evans & Honkapohja, that mainly focuses on learning for testing local stability of equilibria), since learning is directly embedded in the behaviour of the individual agents. This original approach opens new perspectives about the NKM, and allows us to ask new questions about the coordination problems that can result from social learning. First, our computational analysis (Monte Carlo simulations) shows that social learning does not allow the agents to correctly learn about the interdependence between markets, because of the emergence of coordination problems that result in insufficient labour supply and depressive dynamics. Second, we shed light on the general properties of social learning that are behind these results in a general (dis)equilibrium setting, and prove that their neutralisation, at least on the one side of the markets, can significantly improve the performance of the economy. Our results point to the importance of carefully modelling learning mechanisms within macroeconomic ABMs.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Isabelle Salle & Murat Yildizoglu & Martin Zumpe & Marc-Alexandre Sénégas, 2012. "Modelling social learning in an Agent-Based new keynesian macroeconomic model," Post-Print hal-00779045, HAL.
  • Handle: RePEc:hal:journl:hal-00779045
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabelle SALLE & Marc-Alexandre SENEGAS & Murat YILDIZOGLU, 2013. "How Transparent About Its Inflation Target Should a Central Bank be? An Agent-Based Model Assessment," Cahiers du GREThA (2007-2019) 2013-24, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    2. Salle, Isabelle & Seppecher, Pascal, 2016. "Social Learning About Consumption," Macroeconomic Dynamics, Cambridge University Press, vol. 20(7), pages 1795-1825, October.
    3. Lengnick, Matthias, 2013. "Agent-based macroeconomics: A baseline model," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 102-120.
    4. Isabelle Salle & Murat Yildizoglu & Martin Zumpe & Marc-Alexandre Sénégas, 2012. "Modelling social learning in an Agent-Based new keynesian macroeconomic model," Post-Print hal-00779045, HAL.
    5. Severin Reissl, 2021. "Heterogeneous expectations, forecasting behaviour and policy experiments in a hybrid Agent-based Stock-flow-consistent model," Journal of Evolutionary Economics, Springer, vol. 31(1), pages 251-299, January.
    6. Gerard Ballot & Antoine Mandel & Annick Vignes, 2015. "Agent-based modeling and economic theory: where do we stand?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 199-220, October.
    7. Emmanuel PETIT & Anna TCHERKASSOF & Xavier GASSMANN, 2012. "Sincere Giving and Shame in a Dictator Game," Cahiers du GREThA (2007-2019) 2012-25, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    8. Francesco Lissoni & Fabio Montobbio, 2015. "The Ownership of Academic Patents and Their Impact. Evidence from Five European Countries," Revue économique, Presses de Sciences-Po, vol. 66(1), pages 143-171.

    More about this item

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00779045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.