IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/26866.html
   My bibliography  Save this paper

Fast Heuristics for Delay Management with Passenger Rerouting

Author

Listed:
  • Dollevoet, T.A.B.
  • Huisman, D.

Abstract

Delay management models determine which connections should be maintained in case of a delayed feeder train. Recently, delay management models are developed that take into account that passengers will adjust their routes when they miss a connection. However, for large-scale real-world instances, these extended models become too large to be solved with standard integer programming techniques. We therefore develop several heuristics to tackle these larger instances. The dispatching rules that are used in practice are our first heuristic. Our second heuristic applies the classical delay management model without passenger rerouting. Finally, the third heuristic updates the parameters of the classical model iteratively. We compare the quality of these heuristic solution methods on real-life instances from Netherlands Railways. In this experimental study, we show that our iterative heuristic can solve large real-world instances within a short computation time. Furthermore, the solutions obtained by this iterative heuristic are of good quality.

Suggested Citation

  • Dollevoet, T.A.B. & Huisman, D., 2011. "Fast Heuristics for Delay Management with Passenger Rerouting," Econometric Institute Research Papers EI 2011-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:26866
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/26866/EI2011-35.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dollevoet, T.A.B. & Huisman, D. & Schmidt, M.E. & Schöbel, A., 2010. "Delay Management with Re-Routing of Passengers," Econometric Institute Research Papers EI 2010-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Twan Dollevoet & Dennis Huisman & Leo Kroon & Marie Schmidt & Anita Schöbel, 2015. "Delay Management Including Capacities of Stations," Transportation Science, INFORMS, vol. 49(2), pages 185-203, May.
    2. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    3. Dollevoet, T.A.B. & Huisman, D. & Schöbel, A. & Schmidt, M.E., 2012. "Delay Management including Capacities of Stations," Econometric Institute Research Papers EI 2012-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Coviello, Nicola, 2015. "Modelling periodic operations on single track lines: Timetable design and stability evaluation," Research in Transportation Economics, Elsevier, vol. 54(C), pages 2-14.
    5. Dollevoet, T.A.B. & Corman, F. & D'Ariano, A. & Huisman, D., 2012. "An Iterative Optimization Framework for Delay Management and Train Scheduling," Econometric Institute Research Papers EI 2012-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    2. Dekker, M.M. & van Lieshout, R.N. & Ball, R.C. & Bouman, P.C. & Dekker, S.C. & Dijkstra, H.A. & Goverde, R.M.P. & Huisman, D. & Panja, D. & Schaafsma, A.M. & van den Akker, M., 2018. "A Next Step in Disruption Management: Combining Operations Research and Complexity Science," Econometric Institute Research Papers EI2018-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Corman, Francesco & D’Ariano, Andrea & Marra, Alessio D. & Pacciarelli, Dario & Samà, Marcella, 2017. "Integrating train scheduling and delay management in real-time railway traffic control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 213-239.
    4. Veelenturf, L.P. & Kidd, M.P. & Cacchiani, V. & Kroon, L.G. & Toth, P., 2014. "A railway timetable rescheduling approach for handling large scale disruptions," ERIM Report Series Research in Management ERS-2014-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    6. Cordone, Roberto & Redaelli, Francesco, 2011. "Optimizing the demand captured by a railway system with a regular timetable," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 430-446, February.
    7. Twan Dollevoet & Dennis Huisman & Leo Kroon & Marie Schmidt & Anita Schöbel, 2015. "Delay Management Including Capacities of Stations," Transportation Science, INFORMS, vol. 49(2), pages 185-203, May.
    8. Emilio Carrizosa & Jonas Harbering & Anita Schöbel, 2016. "Minimizing the passengers’ traveling time in the stop location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1325-1337, October.
    9. Veronica Dal Sasso & Luigi De Giovanni & Martine Labbé, 2019. "Strengthened Formulations and Valid Inequalities for Single Delay Management in Public Transportation," Transportation Science, INFORMS, vol. 53(5), pages 1271-1286, September.
    10. Lucas P. Veelenturf & Martin P. Kidd & Valentina Cacchiani & Leo G. Kroon & Paolo Toth, 2016. "A Railway Timetable Rescheduling Approach for Handling Large-Scale Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 841-862, August.
    11. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    12. Jonas Harbering, 2017. "Delay resistant line planning with a view towards passenger transfers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 467-496, October.
    13. Louwerse, Ilse & Huisman, Dennis, 2014. "Adjusting a railway timetable in case of partial or complete blockades," European Journal of Operational Research, Elsevier, vol. 235(3), pages 583-593.
    14. Cacchiani, V. & Huisman, D. & Kidd, M.P. & Kroon, L.G. & Toth, P. & Veelenturf, L.P. & Wagenaar, J.C., 2013. "An Overview of Recovery Models for Real-time Railway Rescheduling," Econometric Institute Research Papers 50112, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Dollevoet, T.A.B. & Corman, F. & D'Ariano, A. & Huisman, D., 2012. "An Iterative Optimization Framework for Delay Management and Train Scheduling," Econometric Institute Research Papers EI 2012-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Lamorgese, Leonardo & Mannino, Carlo & Natvig, Erik, 2017. "An exact micro–macro approach to cyclic and non-cyclic train timetabling," Omega, Elsevier, vol. 72(C), pages 59-70.
    17. Leonardo Lamorgese & Carlo Mannino & Mauro Piacentini, 2016. "Optimal Train Dispatching by Benders’-Like Reformulation," Transportation Science, INFORMS, vol. 50(3), pages 910-925, August.
    18. Li, Shukai & Zhou, Xuesong & Yang, Lixing & Gao, Ziyou, 2018. "Automatic train regulation of complex metro networks with transfer coordination constraints: A distributed optimal control framework," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 228-253.
    19. Anita Schöbel & Silvia Schwarze, 2013. "Finding delay-resistant line concepts using a game-theoretic approach," Netnomics, Springer, vol. 14(3), pages 95-117, November.
    20. Luan, Xiaojie & Wang, Yihui & De Schutter, Bart & Meng, Lingyun & Lodewijks, Gabriel & Corman, Francesco, 2018. "Integration of real-time traffic management and train control for rail networks - Part 1: Optimization problems and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 41-71.

    More about this item

    Keywords

    daily management; passenger rerouting; public transportation; railway operations;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:26866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.