IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1720.html
   My bibliography  Save this paper

Simple approximations for option pricing under mean reversion and stochastic volatility

Author

Abstract

This paper provides simple approximations for evaluating option prices and implied volatilities under stochastic volatility. Simple recursive formulae are derived that can easily be implemented in spreadsheets. The traditional random walk assumption, dominating in the analysis of financial markets, is compared with mean reversion which is often more relevant in commodity markets. Deterministic components in the mean and volatility are taken into consideration to allow for seasonality, another frequent aspect of commodity markets. The stochastic volatility is suitably modelled by GARCH. An application to electricity options shows that the choice between a random walk and a mean reversion model can have strong effects for predictions of implied volatilities even if the two models are statistically close to each other.

Suggested Citation

  • Hafner, C.M., 2003. "Simple approximations for option pricing under mean reversion and stochastic volatility," Econometric Institute Research Papers EI 2003-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1720
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1720/feweco20030708115600.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Aydinli, Gökhan, 2002. "Net based spreadsheets in quantitative finance," SFB 373 Discussion Papers 2002,42, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    4. Hafner, Christian M. & Herwartz, Helmut, 2001. "Option pricing under linear autoregressive dynamics, heteroskedasticity, and conditional leptokurtosis," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 1-34, March.
    5. Schwartz, Eduardo S, 1997. " The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    6. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    derivatives; energy markets; mean reversion; seasonality; spreadsheets; stochastic volatility;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1720. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub). General contact details of provider: http://edirc.repec.org/data/feeurnl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.