IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/82942.html
   My bibliography  Save this paper

Likelihood ratio Haar variance stabilization and normalization for Poisson and other non-Gaussian noise removal

Author

Listed:
  • Fryzlewicz, Piotr

Abstract

We propose a methodology for denoising, variance-stabilizing and normalizing signals whose varying mean and variance are linked via a single parameter, such as Poisson or scaled chi-squared. Our key observation is that the signed and square-rooted generalized log-likelihood ratio test for the equality of the local means is approximately distributed as standard normal under the null. We use these test statistics within the Haar wavelet transform at each scale and location, referring to them as the likelihood ratio Haar (LRH) coefficients of the data. In the denoising algorithm, the LRH coefficients are used as thresholding decision statistics, which enables the use of thresholds suitable for i.i.d. Gaussian noise. In the variance-stabilizing and normalizing algorithm, the LRH coefficients replace the standard Haar coefficients in the Haar basis expansion. We prove the consistency of our LRH smoother for Poisson counts with a near-parametric rate, and various numerical experiments demonstrate the good practical performance of our methodology.

Suggested Citation

  • Fryzlewicz, Piotr, 2018. "Likelihood ratio Haar variance stabilization and normalization for Poisson and other non-Gaussian noise removal," LSE Research Online Documents on Economics 82942, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:82942
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/82942/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    2. Piotr Fryzlewicz & Theofanis Sapatinas & Suhasini Subba Rao, 2006. "A Haar--Fisz technique for locally stationary volatility estimation," Biometrika, Biometrika Trust, vol. 93(3), pages 687-704, September.
    3. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2006. "A Haar-Fisz technique for locally stationary volatility estimation," LSE Research Online Documents on Economics 25225, London School of Economics and Political Science, LSE Library.
    4. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    5. Fryzlewicz, Piotr, 2008. "Data-driven wavelet-Fisz methodology for nonparametric function estimation," LSE Research Online Documents on Economics 25165, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    2. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    3. Schröder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," MPRA Paper 52379, University Library of Munich, Germany.
    4. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    5. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    6. Wang Haoyu & Junpeng Di & Qing Han, 2023. "Adaptive hedging horizon and hedging performance estimation," Papers 2302.00251, arXiv.org.
    7. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    8. Khismatullina, Marina & Vogt, Michael, 2023. "Nonparametric comparison of epidemic time trends: The case of COVID-19," Journal of Econometrics, Elsevier, vol. 232(1), pages 87-108.
    9. Bill Russell & Dooruj Rambaccussing, 2016. "Breaks and the Statistical Process of Inflation: The Case of the ‘Modern’ Phillips Curve," Dundee Discussion Papers in Economics 294, Economic Studies, University of Dundee.
    10. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    12. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2008. "Normalized least-squares estimation in time-varying ARCH models," LSE Research Online Documents on Economics 25187, London School of Economics and Political Science, LSE Library.
    13. Fryzlewicz, Piotr & Delouille, V´eronique & Nason, Guy P., 2007. "GOES-8 X-ray sensor variance stabilization using the multiscale data-driven Haar-Fisz transform," LSE Research Online Documents on Economics 25221, London School of Economics and Political Science, LSE Library.
    14. Greeshma Balabhadra & El Mehdi Ainasse & Pawel Polak, 2023. "High-Frequency Volatility Estimation with Fast Multiple Change Points Detection," Papers 2303.10550, arXiv.org, revised Mar 2023.
    15. Dimitris Politis & Dimitrios Thomakos, 2007. "NoVaS Transformations: Flexible Inference for Volatility Forecasting," Working Papers 0005, University of Peloponnese, Department of Economics.
    16. Gabe Chandler & Wolfgang Polonik, 2017. "Residual Empirical Processes and Weighted Sums for Time-Varying Processes with Applications to Testing for Homoscedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 72-98, January.
    17. Chandler, Gabriel, 2010. "Order selection for heteroscedastic autoregression: A study on concentration," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1904-1910, December.
    18. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    19. Philip Preuss & Mathias Vetter & Holger Dette, 2013. "Testing Semiparametric Hypotheses in Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 417-437, September.
    20. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.

    More about this item

    Keywords

    variance-stabilizing transform; Haar-Fisz; Anscombe transform; log transform; Box-Cox transform; Gaussianization.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:82942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.