IDEAS home Printed from
   My bibliography  Save this paper

Advertising Dynamics and Competitive Advantage


  • Ulrich Doraszelski
  • Sarit Markovich


Can advertising lead to a sustainable competitive advantage? To answer this question, we propose a dynamic model of advertising competition where firms repeatedly advertise, compete in the product market, and make entry as well as exit decisions. Within this dynamic framework, we study two different models of advertising: In the first model, advertising influences the goodwill consumers extend towards a firm ("goodwill advertising"), whereas in the second model it influences the share of consumers who are aware of the firm ("awareness advertising"). We show that asymmetries may arise and persist under goodwill as well as awareness advertising. The basis for a strategic advantage, however, differs greatly in the two models of advertising. We show that tighter regulation or an outright ban of advertising may have anticompetitive effects and discuss how firms use advertising to deter and accommodate entry and induce exit in a dynamic setting

Suggested Citation

  • Ulrich Doraszelski & Sarit Markovich, 2004. "Advertising Dynamics and Competitive Advantage," Econometric Society 2004 North American Summer Meetings 162, Econometric Society.
  • Handle: RePEc:ecm:nasm04:162

    Download full text from publisher

    File URL:
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    1. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    2. Lee, John H. H., 1991. "A Lagrange multiplier test for GARCH models," Economics Letters, Elsevier, vol. 37(3), pages 265-271, November.
    3. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    4. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
    5. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    6. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    7. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
    10. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488, June.
    11. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    12. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    13. Jean-Marie Dufour & Jan F. Kiviet, 1998. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Econometrica, Econometric Society, vol. 66(1), pages 79-104, January.
    14. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    15. Dufour, Jean-Marie & King, Maxwell L., 1991. "Optimal invariant tests for the autocorrelation coefficient in linear regressions with stationary or nonstationary AR(1) errors," Journal of Econometrics, Elsevier, vol. 47(1), pages 115-143, January.
    16. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ulrich Doraszelski & Kenneth L. Judd, 2012. "Avoiding the curse of dimensionality in dynamic stochastic games," Quantitative Economics, Econometric Society, vol. 3(1), pages 53-93, March.
    2. Toker Doganoglu & Daniel Klapper, 2006. "Goodwill and dynamic advertising strategies," Quantitative Marketing and Economics (QME), Springer, vol. 4(1), pages 5-29, March.
    3. Fabiano Schivardi & Martin Schneider, 2008. "Strategic Experimentation and Disruptive Technological Change," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(2), pages 386-412, April.
    4. Victor Tremblay & Natsuko Iwasaki & Carol Tremblay, 2005. "The Dynamics of Industry Concentration for U.S. Micro and Macro Brewers," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 26(3), pages 307-324, December.

    More about this item


    dynamic competition; advertising; competitive advantage;

    JEL classification:

    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:162. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.