IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-344268.html
   My bibliography  Save this paper

Nonparametric Measure-transportation-based Methods for Directional Data

Author

Listed:
  • Marc Hallin
  • H Lui
  • Thomas Verdebout

Abstract

This paper proposes various nonparametric tools for directional data based on measure transportation. We use optimal transports todefine new notions of distribution and quantile functions on the hypersphere, with meaningful quantile contours and regions and closedformformulas under the classical assumption of rotational symmetry. The empirical versions of our distribution functions enjoy the expected Glivenko-Cantelli property of traditional distribution functions. They yield fully distribution-free concepts of ranks and signs and define data-driven systems of (curvilinear) parallels and (hyper) meridians. Based on this, we also propose a test of uniformity and establish its universal consistency; simulations indicate that this test outperforms the “projected” Cram´er-von Mises, Anderson-Darling, and Rothman procedures recently proposed in the literature. Two real-data examples involving the analysis of Venus craters and proteins structures conclude the paper.

Suggested Citation

  • Marc Hallin & H Lui & Thomas Verdebout, 2022. "Nonparametric Measure-transportation-based Methods for Directional Data," Working Papers ECARES 2022-18, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/344268
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/344268/3/2022-18-HALLIN_LUI_VERDEBOUT-nonparametric.pdf
    File Function: Œuvre complète ou partie de l'œuvre
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Hallin & Gilles Mordant & Johan Segers, 2020. "Multivariate Goodness-of-Fit Tests Based on Wasserstein Distance," Working Papers ECARES 2020-06, ULB -- Universite Libre de Bruxelles.
    2. Kanika, & Kumar, Somesh & SenGupta, Ashis, 2015. "A unified approach to decision-theoretic properties of the MLEs for the mean directions of several Langevin distributions," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 160-172.
    3. Eustasio del Barrio & Alberto González-Sanz & Marc Hallin, 2022. "Nonparametric Multiple-Output Center-Outward Quantile Regression," Working Papers ECARES 2022-10, ULB -- Universite Libre de Bruxelles.
    4. repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    5. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    6. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    7. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    8. Thomas Hamelryck & John T Kent & Anders Krogh, 2006. "Sampling Realistic Protein Conformations Using Local Structural Bias," PLOS Computational Biology, Public Library of Science, vol. 2(9), pages 1-13, September.
    9. Peter T. Kim & Ja-Yong Koo & Thanh Mai Pham Ngoc, 2016. "Supersmooth testing on the sphere over analytic classes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 84-115, March.
    10. Christophe Ley & Yvik Swan & Thomas Verdebout, 2017. "Efficient ANOVA for directional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 39-62, February.
    11. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
    12. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    13. Eduardo GarcÍa-Portugués & Ingrid Van Keilegom & Rosa M. Crujeiras and & Wenceslao González-Manteiga, 2016. "Testing parametric models in linear-directional regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1178-1191, December.
    14. Hongjian Shi & Mathias Drton & Fang Han, 2022. "Distribution-Free Consistent Independence Tests via Center-Outward Ranks and Signs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 395-410, January.
    15. Pham Ngoc, Thanh Mai, 2019. "Adaptive optimal kernel density estimation for directional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 248-267.
    16. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2015. "Monge-Kantorovich depth, quantiles, ranks and signs," CeMMAP working papers 57/15, Institute for Fiscal Studies.
    17. Eduardo Garcia-Portugues & Davy Paindaveine & Thomas Verdebout, 2020. "On optimal tests for rotational symmetry against new classes of hyperspherical distributions," Post-Print hal-03169388, HAL.
    18. Garcia Portugues, Eduardo & Van Keilegom, Ingrid & Crujeiras and, Rosa M. & Gonzalez-Manteiga, Wenceslao, 2016. "Testing parametric models in linear-directional regression," LIDAM Reprints ISBA 2016046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Aboubacar Amiri & Baba Thiam & Thomas Verdebout, 2017. "On the Estimation of the Density of a Directional Data Stream," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 249-267, March.
    20. Eduardo García-Portugués & Davy Paindaveine & Thomas Verdebout, 2020. "On Optimal Tests for Rotational Symmetry Against New Classes of Hyperspherical Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1873-1887, December.
    21. Christophe Ley & Camille Sabbah & Thomas Verdebout, 2014. "A new concept of quantiles for directional data and the angular Mahalanobis depth," Working Papers ECARES ECARES 2013-23, ULB -- Universite Libre de Bruxelles.
    22. Abe, Toshihiro & Ley, Christophe, 2017. "A tractable, parsimonious and flexible model for cylindrical data, with applications," Econometrics and Statistics, Elsevier, vol. 4(C), pages 91-104.
    23. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    24. Graciela Boente & Daniela Rodriguez & Wenceslao González Manteiga, 2014. "Goodness-of-fit Test for Directional Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 259-275, March.
    25. Mastrantonio, Gianluca, 2018. "The joint projected normal and skew-normal: A distribution for poly-cylindrical data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 14-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    3. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    4. Marc Hallin & Hang Liu, 2022. "Center-outward Rank- and Sign-based VARMA Portmanteau Tests," Working Papers ECARES 2022-27, ULB -- Universite Libre de Bruxelles.
    5. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    6. Marc Hallin & Davide La Vecchia & H Liu, 2019. "Center-Outward R-Estimation for Semiparametric VARMA Models," Working Papers ECARES 2019-25, ULB -- Universite Libre de Bruxelles.
    7. Faugeras, Olivier P. & Rüschendorf, Ludger, 2021. "Functional, randomized and smoothed multivariate quantile regions," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    8. Marc Hallin & Gilles Mordant, 2021. "On the Finite-Sample Performance of Measure Transportation-Based Multivariate Rank Tests," Working Papers ECARES 2021-24, ULB -- Universite Libre de Bruxelles.
    9. Alfred Galichon & Bernard Salani'e, 2021. "Cupid's Invisible Hand: Social Surplus and Identification in Matching Models," Papers 2106.02371, arXiv.org, revised Jan 2023.
    10. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    11. Marc Hallin & Daniel Hlubinka & Sarka Hudecova, 2021. "Efficient Fully Distribution-Free Center-Outward Rank Tests for Multiple-Output Regression and MANOVA," Working Papers ECARES 2021-13, ULB -- Universite Libre de Bruxelles.
    12. Florian Gunsilius, 2018. "Point-identification in multivariate nonseparable triangular models," Papers 1806.09680, arXiv.org.
    13. Petra Laketa & Stanislav Nagy, 2022. "Halfspace depth for general measures: the ray basis theorem and its consequences," Statistical Papers, Springer, vol. 63(3), pages 849-883, June.
    14. Marc Hallin & Hongjian Shi & Mathias Drton & Fang Han, 2021. "Center-Outward Sign- and Rank-Based Quadrant, Spearman, and Kendall Tests for Multivariate Independence," Working Papers ECARES 2021-27, ULB -- Universite Libre de Bruxelles.
    15. Beirlant, J. & Buitendag, S. & del Barrio, E. & Hallin, M. & Kamper, F., 2020. "Center-outward quantiles and the measurement of multivariate risk," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 79-100.
    16. Manuel Arellano & Stéphane Bonhomme, 2019. "Recovering Latent Variables by Matching," Working Papers wp2019_1914, CEMFI.
    17. Florian Gunsilius & Susanne M. Schennach, 2019. "Independent nonlinear component analysis," CeMMAP working papers CWP46/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Hudecová, Šárka & Šiman, Miroslav, 2022. "Multivariate ranks based on randomized lift-interdirections," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    19. Yanqin Fan & Marc Henry, 2020. "Vector copulas," Papers 2009.06558, arXiv.org, revised Apr 2021.
    20. Marcel Klatt & Axel Munk & Yoav Zemel, 2022. "Limit laws for empirical optimal solutions in random linear programs," Annals of Operations Research, Springer, vol. 315(1), pages 251-278, August.

    More about this item

    Keywords

    directional statistics; quantile; ranks; optimal transport;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/344268. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.