IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i3ne70011.html
   My bibliography  Save this article

Joint Modeling of Wind Speed and Wind Direction Through a Conditional Approach

Author

Listed:
  • Eva Murphy
  • Whitney Huang
  • Julie Bessac
  • Jiali Wang
  • Rao Kotamarthi

Abstract

Atmospheric near surface wind speed and wind direction play an important role in many applications, ranging from air quality modeling, building design, wind turbine placement to climate change research. It is therefore crucial to accurately estimate the joint probability distribution of wind speed and direction. In this work, we develop a conditional approach to model these two variables, where the joint distribution is decomposed into the product of the marginal distribution of wind direction and the conditional distribution of wind speed given wind direction. To accommodate the circular nature of wind direction, a von Mises mixture model is used; the conditional wind speed distribution is modeled as a directional dependent Weibull distribution via a two‐stage estimation procedure, consisting of a directional binned Weibull parameter estimation, followed by a harmonic regression to estimate the dependence of the Weibull parameters on wind direction. A Monte Carlo simulation study indicates that our method outperforms two other approaches in estimation efficiency: one that utilizes periodic spline quantile regression and another that generates data from the commonly used Abe‐Ley distribution for cylindrical data. We illustrate our method by using the output from a regional climate model to investigate how the joint distribution of wind speed and direction may change under some future climate scenarios. Our method indicates significant changes in the variation of wind speed with respect to some directions.

Suggested Citation

  • Eva Murphy & Whitney Huang & Julie Bessac & Jiali Wang & Rao Kotamarthi, 2025. "Joint Modeling of Wind Speed and Wind Direction Through a Conditional Approach," Environmetrics, John Wiley & Sons, Ltd., vol. 36(3), April.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:3:n:e70011
    DOI: 10.1002/env.70011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.70011
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.70011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mullen, Katharine M. & Ardia, David & Gil, David L. & Windover, Donald & Cline, James, 2011. "DEoptim: An R Package for Global Optimization by Differential Evolution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i06).
    2. Stuart G. Coles & David Walshaw, 1994. "Directional Modelling of Extreme Wind Speeds," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 139-157, March.
    3. Hornik, Kurt & Grün, Bettina, 2014. "movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i10).
    4. Paolo Frumento & Matteo Bottai, 2016. "Parametric modeling of quantile regression coefficient functions," Biometrics, The International Biometric Society, vol. 72(1), pages 74-84, March.
    5. Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
    6. Paolo Frumento & Matteo Bottai & Iván Fernández-Val, 2021. "Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 783-797, April.
    7. Christophe Ley & Camille Sabbah & Thomas Verdebout, 2014. "A new concept of quantiles for directional data and the angular Mahalanobis depth," Working Papers ECARES ECARES 2013-23, ULB -- Universite Libre de Bruxelles.
    8. Abe, Toshihiro & Ley, Christophe, 2017. "A tractable, parsimonious and flexible model for cylindrical data, with applications," Econometrics and Statistics, Elsevier, vol. 4(C), pages 91-104.
    9. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    10. Gianluca Mastrantonio & Antonello Maruotti & Giovanna Jona‐Lasinio, 2015. "Bayesian hidden Markov modelling using circular‐linear general projected normal distribution," Environmetrics, John Wiley & Sons, Ltd., vol. 26(2), pages 145-158, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Sottile, Gianluca & Frumento, Paolo, 2022. "Robust estimation and regression with parametric quantile functions," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    3. Gao, Suhao & Yu, Zhen, 2023. "Parametric expectile regression and its application for premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 242-256.
    4. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    5. Giorgio Cecchi, 2025. "The importance of being present. a two-part model approach to assess the impact of synchronous online learning on the academic success of university students," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(1), pages 439-461, February.
    6. Castiglione, Cristian & Arnone, Eleonora & Bernardi, Mauro & Farcomeni, Alessio & Sangalli, Laura M., 2025. "PDE-regularised spatial quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    7. Viviana Carcaiso & Leonardo Grilli, 2023. "Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1061-1082, October.
    8. Rong Jiang & Siu Kai Choy & Keming Yu, 2024. "Non‐crossing quantile double‐autoregression for the analysis of streaming time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 513-532, July.
    9. S. Ghasemzadeh & M. Ganjali & T. Baghfalaki, 2022. "Quantile regression via the EM algorithm for joint modeling of mixed discrete and continuous data based on Gaussian copula," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1181-1202, December.
    10. You, Kisung & Suh, Changhee, 2022. "Parameter estimation and model-based clustering with spherical normal distribution on the unit hypersphere," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    11. Giuseppe Pandolfo & Antonio D’ambrosio, 2023. "Clustering directional data through depth functions," Computational Statistics, Springer, vol. 38(3), pages 1487-1506, September.
    12. Marc Hallin & H Lui & Thomas Verdebout, 2022. "Nonparametric Measure-transportation-based Methods for Directional Data," Working Papers ECARES 2022-18, ULB -- Universite Libre de Bruxelles.
    13. Mastrantonio, Gianluca, 2018. "The joint projected normal and skew-normal: A distribution for poly-cylindrical data," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 14-26.
    14. Filipe Costa Souza & Wilton Bernardino & Silvio C. Patricio, 2024. "How life-table right-censoring affected the Brazilian social security factor: an application of the gamma-Gompertz-Makeham model," Journal of Population Research, Springer, vol. 41(3), pages 1-38, September.
    15. Fernando Rojas & Peter Wanke & Víctor Leiva & Mauricio Huerta & Carlos Martin-Barreiro, 2022. "Modeling Inventory Cost Savings and Supply Chain Success Factors: A Hybrid Robust Compromise Multi-Criteria Approach," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    16. Felix Mbuga & Cristina Tortora, 2021. "Spectral Clustering of Mixed-Type Data," Stats, MDPI, vol. 5(1), pages 1-11, December.
    17. Villacorta, Pablo J. & Verdegay, José L., 2016. "FuzzyStatProb: An R Package for the Estimation of Fuzzy Stationary Probabilities from a Sequence of Observations of an Unknown Markov Chain," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i08).
    18. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    19. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    20. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:3:n:e70011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.